
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1638668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patient-derived xenograft models capture genomic heterogeneity in endometrial cancer. Genome Medicine, 2022, 14, 3.	3.6	16
2	Fibroblast Growth Factor Receptor 2 Isoforms Detected via Novel RNA ISH as Predictive Biomarkers for Progestin Therapy in Atypical Hyperplasia and Low-Grade Endometrial Cancer. Cancers, 2021, 13, 1703.	1.7	8
3	Molecular Classification of the PORTEC-3 Trial for High-Risk Endometrial Cancer: Impact on Prognosis and Benefit From Adjuvant Therapy. Journal of Clinical Oncology, 2020, 38, 3388-3397.	0.8	398
4	FGFR2c Mesenchymal Isoform Expression Is Associated with Poor Prognosis and Further Refines Risk Stratification within Endometrial Cancer Molecular Subtypes. Clinical Cancer Research, 2020, 26, 4569-4580.	3.2	10
5	Anti-CDCP1 immuno-conjugates for detection and inhibition of ovarian cancer. Theranostics, 2020, 10, 2095-2114.	4.6	15
6	Bclâ€2 inhibitors enhance FGFR inhibitorâ€induced mitochondrialâ€dependent cell death in FGFR2â€mutant endometrial cancer. Molecular Oncology, 2019, 13, 738-756.	2.1	12
7	Refinement of high-risk endometrial cancer classification using DNA damage response biomarkers: a TransPORTEC initiative. Modern Pathology, 2018, 31, 1851-1861.	2.9	35
8	FGFR2b activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer. Journal of Cell Science, 2018, 131, .	1.2	14
9	PI3K Inhibitors Synergize with FGFR Inhibitors to Enhance Antitumor Responses in FGFR2mutant Endometrial Cancers. Molecular Cancer Therapeutics, 2017, 16, 637-648.	1.9	34
10	Markers of the p53 pathway further refine molecular profiling in high-risk endometrial cancer: A Trans PORTEC initiative. Gynecologic Oncology, 2017, 146, 327-333.	0.6	26
11	FGFR2 mutations are associated with poor outcomes in endometrioid endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecologic Oncology, 2017, 145, 366-373.	0.6	40
12	Loss of Rearranged L-Myc Fusion (RLF) results in defects in heart development in the mouse. Differentiation, 2017, 94, 8-20.	1.0	10
13	Immunological profiling of molecularly classified high-risk endometrial cancers identifies <i>POLE</i> -mutant and microsatellite unstable carcinomas as candidates for checkpoint inhibition. Oncolmmunology, 2017, 6, e1264565.	2.1	102
14	hSSB1 phosphorylation is dynamically regulated by DNA-PK and PPP-family protein phosphatases. DNA Repair, 2017, 54, 30-39.	1.3	15
15	Endometrial cancer cells exhibit high expression of p110Î ² and its selective inhibition induces variable responses on PI3K signaling, cell survival and proliferation. Oncotarget, 2017, 8, 3881-3894.	0.8	15
16	A Common Variant at the 14q32 Endometrial Cancer Risk Locus Activates AKT1 through YY1 Binding. American Journal of Human Genetics, 2016, 98, 1159-1169.	2.6	32
17	The â€ [~] melanoma-enriched' microRNA miR-4731-5p acts as a tumour suppressor. Oncotarget, 2016, 7, 49677-49687.	0.8	21
18	The Prognostic and Predictive Value of Melanoma-related MicroRNAs Using Tissue and Serum: A MicroRNA Expression Analysis, FBioMedicine, 2015, 2, 671-680.	2.7	86

#	Article	IF	CITATIONS
19	Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative. Modern Pathology, 2015, 28, 836-844.	2.9	343
20	Paralog-Specific Kinase Inhibition of FGFR4: Adding to the Arsenal of Anti-FGFR Agents. Cancer Discovery, 2015, 5, 355-357.	7.7	16
21	Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Human Molecular Genetics, 2015, 24, 1478-1492.	1.4	50
22	miR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget, 2015, 6, 17753-17763.	0.8	81
23	A phase II trial of brivanib in recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group Study. Gynecologic Oncology, 2014, 135, 38-43.	0.6	82
24	The N550K/H Mutations in FGFR2 Confer Differential Resistance to PD173074, Dovitinib, and Ponatinib ATP-Competitive Inhibitors. Neoplasia, 2013, 15, 975-IN30.	2.3	116
25	Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73.	13.7	4,075
26	XIAP downregulation accompanies mebendazole growth inhibition in melanoma xenografts. Anti-Cancer Drugs, 2013, 24, 181-188.	0.7	46
27	Lineage-Specific Biomarkers Predict Response to FGFR Inhibition. Cancer Discovery, 2012, 2, 1081-1083.	7.7	1
28	Sensitivity to the MEK inhibitor E6201 in melanoma cells is associated with mutant BRAF and wildtype PTEN status. Molecular Cancer, 2012, 11, 75.	7.9	36
29	Fibroblast Growth Factor Receptor Inhibition Synergizes With Paclitaxel and Doxorubicin in Endometrial Cancer Cells. International Journal of Gynecological Cancer, 2012, 22, 1.	1.2	23
30	FGFR2 Point Mutations in 466 Endometrioid Endometrial Tumors: Relationship with MSI, KRAS, PIK3CA, CTNNB1 Mutations and Clinicopathological Features. PLoS ONE, 2012, 7, e30801.	1.1	150
31	Targeting mutant fibroblast growth factor receptors in cancer. Trends in Molecular Medicine, 2011, 17, 283-292.	3.5	112
32	Cellular Settings Mediating Src Substrate Switching between Focal Adhesion Kinase Tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) Tyrosine 734*. Journal of Biological Chemistry, 2011, 286, 42303-42315.	1.6	32
33	FGFR2 mutations are rare across histologic subtypes of ovarian cancer. Gynecologic Oncology, 2010, 117, 125-129.	0.6	45
34	p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell and Melanoma Research, 2010, 23, 781-794.	1.5	59
35	Active Notch1 Confers a Transformed Phenotype to Primary Human Melanocytes. Cancer Research, 2009, 69, 5312-5320.	0.4	103
36	Homodimerization Controls the Fibroblast Growth Factor 9 Subfamily's Receptor Binding and Heparan Sulfate-Dependent Diffusion in the Extracellular Matrix. Molecular and Cellular Biology, 2009, 29, 4663-4678.	1.1	44

#	Article	IF	CITATIONS
37	Loss-of-Function Fibroblast Growth Factor Receptor-2 Mutations in Melanoma. Molecular Cancer Research, 2009, 7, 41-54.	1.5	112
38	FGFR2 as a molecular target in endometrial cancer. Future Oncology, 2009, 5, 27-32.	1.1	55
39	A crystallographic snapshot of tyrosine <i>trans</i> -phosphorylation in action. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19660-19665.	3.3	61
40	Common variation in the fibroblast growth factor receptor 2 gene is not associated with endometriosis risk. Human Reproduction, 2008, 23, 1661-1668.	0.4	14
41	Inhibition of Activated Fibroblast Growth Factor Receptor 2 in Endometrial Cancer Cells Induces Cell Death Despite PTEN Abrogation. Cancer Research, 2008, 68, 6902-6907.	0.4	134
42	Brivanib Alaninate, a Dual Inhibitor of Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Tyrosine Kinases, Induces Growth Inhibition in Mouse Models of Human Hepatocellular Carcinoma. Clinical Cancer Research, 2008, 14, 6146-6153.	3.2	213
43	Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene, 2007, 26, 7158-7162.	2.6	284
44	Osteopontin is a downstream effector of the PI3-kinase pathway in melanomas that is inversely correlated with functional PTEN. Carcinogenesis, 2006, 27, 1778-1786.	1.3	55
45	Proteasome Inhibitors Trigger NOXA-Mediated Apoptosis in Melanoma and Myeloma Cells. Cancer Research, 2005, 65, 6282-6293.	0.4	300
46	Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene, 2004, 23, 4060-4067.	2.6	169
47	Deletion mapping suggests that the 1p22 melanoma susceptibility gene is a tumor suppressor localized to a 9-mb interval. Genes Chromosomes and Cancer, 2004, 41, 56-64.	1.5	37
48	p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Molecular Cancer Therapeutics, 2004, 3, 895-902.	1.9	90
49	High frequency of BRAF mutations in nevi. Nature Genetics, 2003, 33, 19-20.	9.4	1,547
50	Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nature Genetics, 2003, 34, 108-112.	9.4	260
51	PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Research, 2002, 12, 565-575.	0.6	63
52	Mutations in exon 3 of the β-catenin gene are rare in melanoma cell lines. Melanoma Research, 2002, 12, 183-186.	0.6	34
53	A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell, 2002, 2, 5-7.	7.7	139
54	Lucky draw in the gene raffle. Nature, 2002, 417, 906-907.	13.7	34

4

#	Article	IF	CITATIONS
55	CDKN2A is not the principal target of deletions on the short arm of chromosome 9 in neuroendocrine (Merkel cell) carcinoma of the skin. International Journal of Cancer, 2001, 93, 361-367.	2.3	10
56	Mutation analysis of theCDKN2A promoter in Australian melanoma families. Genes Chromosomes and Cancer, 2001, 32, 89-94.	1.5	20
57	Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 2000, 406, 536-540.	13.7	1,877
58	Haplotype analysis of two recurrentCDKN2A mutations in 10 melanoma families: Evidence for common founders and independent mutations. , 1998, 11, 424-431.		61
59	Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene, 1997, 15, 2999-3005.	2.6	78
60	CDKN2A mutation in a non-FAMMM kindred with cancers at multiple sites results in a functionally abnormal protein. , 1997, 73, 531-536.		43
61	Compilation of somatic mutations of theCDKN2 gene in human cancers: Non-random distribution of base substitutions. , 1996, 15, 77-88.		155
62	A homologue of the Drosophila Son of Sevenless gene maps to mouse chromosome 17. Genomics, 1993, 18, 733-734.	1.3	3