
Richard C Cronn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding. Molecular Ecology, 2021, 30, 4970-4990.	3.9	33

Range-wide assessment of a SNP panel for individualization and geolocalization of bigleaf maple (Acer) Tj ETQq0 0 $\binom{0.8}{0.8}$ BT /Overlock 10 T

3	An Axiom SNP genotyping array for Douglas-fir. BMC Genomics, 2020, 21, 9.	2.8	25
4	Predicting the geographic origin of Spanish Cedar (Cedrela odorata L.) based on DNA variation. Conservation Genetics, 2020, 21, 625-639.	1.5	11
5	Casting a broader net: Using microfluidic metagenomics to capture aquatic biodiversity data from diverse taxonomic targets. Environmental DNA, 2019, 1, 251-267.	5.8	12
6	Genomic resources for the Neotropical tree genus Cedrela (Meliaceae) and its relatives. BMC Genomics, 2019, 20, 58.	2.8	15
7	eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications. Science of the Total Environment, 2019, 649, 1157-1170.	8.0	60
8	Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytologist, 2019, 221, 2286-2297.	7.3	84
9	A draft genome and transcriptome of common milkweed (<i>Asclepias syriaca</i>) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ, 2019, 7, e7649.	2.0	19
10	Comparative Transcriptomics Among Four White Pine Species. G3: Genes, Genomes, Genetics, 2018, 8, 1461-1474.	1.8	35
11	Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA. BMC Genomics, 2018, 19, 896.	2.8	6
11	Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA. BMC Genomics, 2018, 19, 896. Development of nuclear microsatellite loci for Pinus albicaulis Engelm. (Pinaceae), a conifer of conservation concern. PLoS ONE, 2018, 13, e0205423.	2.8 2.5	6
	Genomics, 2018, 19, 896. Development of nuclear microsatellite loci for Pinus albicaulis Engelm. (Pinaceae), a conifer of		
12	Genomics, 2018, 19, 896. Development of nuclear microsatellite loci for Pinus albicaulis Engelm. (Pinaceae), a conifer of conservation concern. PLoS ONE, 2018, 13, e0205423. Evolution at the tips: <i>Asclepias</i> phylogenomics and new perspectives on leaf surfaces. American	2.5	2
12 13	Genomics, 2018, 19, 896. Development of nuclear microsatellite loci for Pinus albicaulis Engelm. (Pinaceae), a conifer of conservation concern. PLoS ONE, 2018, 13, e0205423. Evolution at the tips: <i>Asclepias</i> phylogenomics and new perspectives on leaf surfaces. American Journal of Botany, 2018, 105, 514-524. PacBio-Based Mitochondrial Genome Assembly of Leucaena trichandra (Leguminosae) and an Intrageneric Assessment of Mitochondrial RNA Editing. Genome Biology and Evolution, 2018, 10,	2.5 1.7	2 19
12 13 14	 Genomics, 2018, 19, 896. Development of nuclear microsatellite loci for Pinus albicaulis Engelm. (Pinaceae), a conifer of conservation concern. PLoS ONE, 2018, 13, e0205423. Evolution at the tips: <i>Asclepias</i> phylogenomics and new perspectives on leaf surfaces. American Journal of Botany, 2018, 105, 514-524. PacBio-Based Mitochondrial Genome Assembly of Leucaena trichandra (Leguminosae) and an Intrageneric Assessment of Mitochondrial RNA Editing. Genome Biology and Evolution, 2018, 10, 2501-2517. A time and a place for everything: phylogenetic history and geography as joint predictors of oak 	2.5 1.7 2.5	2 19 49
12 13 14 15	Genomics, 2018, 19, 896. Development of nuclear microsatellite loci for Pinus albicaulis Engelm. (Pinaceae), a conifer of conservation concern. PLoS ONE, 2018, 13, e0205423. Evolution at the tips: <i>Asclepias</i> phylogenomics and new perspectives on leaf surfaces. American Journal of Botany, 2018, 105, 514-524. PacBio-Based Mitochondrial Genome Assembly of Leucaena trichandra (Leguminosae) and an Intrageneric Assessment of Mitochondrial RNA Editing. Genome Biology and Evolution, 2018, 10, 2501-2517. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome, 2017, 60, 720-732. Source Identification of Western Oregon Douglas-Fir Wood Cores Using Mass Spectrometry and	2.5 1.7 2.5 2.0	2 19 49 64

RICHARD C CRONN

#	Article	IF	CITATIONS
19	Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles. BMC Genomics, 2017, 18, 558.	2.8	35
20	Development of Molecular Markers for Determining Continental Origin of Wood from White Oaks (Quercus L. sect. Quercus). PLoS ONE, 2016, 11, e0158221.	2.5	34
21	Targeted Capture Sequencing in Whitebark Pine Reveals Range-Wide Demographic and Adaptive Patterns Despite Challenges of a Large, Repetitive Genome. Frontiers in Plant Science, 2016, 7, 484.	3.6	38
22	Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African <i>Oxalis</i> (Oxalidaceae). Molecular Ecology Resources, 2016, 16, 1124-1135.	4.8	101
23	Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing. PLoS ONE, 2015, 10, e0145031.	2.5	28
24	<i>Fragaria</i> : A genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany, 2014, 101, 1686-1699.	1.7	149
25	Hybâ€5eq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences, 2014, 2, 1400042.	2.1	405
26	Dual RNA-seq of the plant pathogen Phytophthora ramorum and its tanoak host. Tree Genetics and Genomes, 2014, 10, 489-502.	1.6	45
27	An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines. BMC Evolutionary Biology, 2014, 14, 67.	3.2	21
28	Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Molecular Phylogenetics and Evolution, 2013, 66, 17-29.	2.7	144
29	Microsatellite Primers for the Pacific Northwest ConiferCallitropsis nootkatensis(Cupressaceae). Applications in Plant Sciences, 2013, 1, 1300025.	2.1	0
30	A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics, 2013, 14, 137.	2.8	55
31	Transcriptome characterization and detection of gene expression differences in aspen (Populus) Tj ETQq1 1 0.78	4314 rgBT 1.6	- /&verlock 1
32	Horizontal Transfer of DNA from the Mitochondrial to the Plastid Genome and Its Subsequent Evolution in Milkweeds (Apocynaceae). Genome Biology and Evolution, 2013, 5, 1872-1885.	2.5	129
33	Low Diversity in the Mitogenome of Sperm Whales Revealed by Next-Generation Sequencing. Genome Biology and Evolution, 2013, 5, 113-129.	2.5	37
34	Navigating the tip of the genomic iceberg: Nextâ€generation sequencing for plant systematics. American Journal of Botany, 2012, 99, 349-364.	1.7	558
35	Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evolutionary Biology, 2012, 12, 100.	3.2	96
36	Targeted enrichment strategies for nextâ€generation plant biology. American Journal of Botany, 2012, 99, 291-311.	1.7	212

RICHARD C CRONN

#	Article	IF	CITATIONS
37	Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecology, 2011, 11, 10.	3.0	66
38	Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing. BMC Genomics, 2011, 12, 211.	2.8	104
39	Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata). BMC Genomics, 2011, 12, 370.	2.8	46
40	Microsatellite primers for the Pacific Northwest endemic conifer <i>Chamaecyparis lawsoniana</i> (Cupressaceae). American Journal of Botany, 2011, 98, e323-5.	1.7	3
41	Adventures in the Enormous: A 1.8 Million Clone BAC Library for the 21.7 Gb Genome of Loblolly Pine. PLoS ONE, 2011, 6, e16214.	2.5	41
42	What are the best seed sources for ecosystem restoration on BLM and USFS lands?. Native Plants Journal, 2010, 11, 117-131.	0.2	114
43	Development of novel chloroplast microsatellite markers to identify species in the Agrostis complex (Poaceae) and related genera. Molecular Ecology Resources, 2010, 10, 738-740.	4.8	11
44	Tangled trios?: Characterizing a hybrid zone inCastilleja(Orobanchaceae). American Journal of Botany, 2009, 96, 1519-1531.	1.7	21
45	Evolution and Natural History of the Cotton Genus. , 2009, , 3-22.		169
46	Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology, 2009, 7, 84.	3.8	504
47	Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution, 2009, 52, 498-511.	2.7	127
48	Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Research, 2008, 36, e122-e122.	14.5	356
49	Multiple Nuclear Loci Reveal the Distinctiveness of the Threatened, Neotropical <i>Pinus chiapensis</i> . Systematic Botany, 2007, 32, 703-717.	0.5	16
50	Widespread Genealogical Nonmonophyly in Species of Pinus Subgenus Strobus. Systematic Biology, 2007, 56, 163-181.	5.6	158
51	Fossil Calibration of Molecular Divergence Infers a Moderate Mutation Rate and Recent Radiations for Pinus. Molecular Biology and Evolution, 2007, 24, 90-101.	8.9	197
52	Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: a case study in Pinus lambertiana. Molecular Ecology, 2007, 16, 3926-3937.	3.9	66
53	Length polymorphism scanning is an efficient approach for revealing chloroplast DNA variation. Genome, 2006, 49, 134-142.	2.0	8
54	Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes. Plant Systematics and Evolution, 2005, 252, 199-214.	0.9	52

RICHARD C CRONN

#	Article	IF	CITATIONS
55	Evolutionary relationships among <i>Pinus</i> (Pinaceae) subsections inferred from multiple low opy nuclear loci. American Journal of Botany, 2005, 92, 2086-2100.	1.7	83
56	Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany, 2004, 17, 145.	0.9	367
57	Cryptic trysts, genomic mergers, and plant speciation. New Phytologist, 2004, 161, 133-142.	7.3	124
58	Pacific Northwest Forest Tree Seed Zones: A Template for Native Plants?. Native Plants Journal, 2004, 5, 131-140.	0.2	104
59	CRYPTIC REPEATED GENOMIC RECOMBINATION DURING SPECIATION IN GOSSYPIUM GOSSYPIOIDES. Evolution; International Journal of Organic Evolution, 2003, 57, 2475-2489.	2.3	77
60	Polyploidy and the evolutionary history of cotton. Advances in Agronomy, 2003, 78, 139-186.	5.2	694
61	Rate Variation Among Nuclear Genes and the Age of Polyploidy in Gossypium. Molecular Biology and Evolution, 2003, 20, 633-643.	8.9	325
62	CRYPTIC REPEATED GENOMIC RECOMBINATION DURING SPECIATION IN GOSSYPIUM GOSSYPIOIDES. Evolution; International Journal of Organic Evolution, 2003, 57, 2475.	2.3	6
63	Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4649-4654.	7.1	793
64	Quantitative Analysis of Transcript Accumulation from Genes Duplicated by Polyploidy Using cDNASSCP. BioTechniques, 2003, 34, 726-734.	1.8	23
65	Intron Size and Genome Size in Plants. Molecular Biology and Evolution, 2002, 19, 2346-2352.	8.9	67
66	Rapid diversification of the cotton genus (<i>Gossypium</i> : Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. American Journal of Botany, 2002, 89, 707-725.	1.7	249
67	Length and sequence heterogeneity in 5S rDNA ofPopulus deltoides. Genome, 2002, 45, 1181-1188.	2.0	38
68	Feast and famine in plant genomes. Genetica, 2002, 115, 37-47.	1.1	135
69	Comparative development of fiber in wild and cultivated cotton. Evolution & Development, 2001, 3, 3-17.	2.0	145
70	Simple methods for isolating homoeologous loci from allopolyploid genomes. Genome, 1998, 41, 756-762.	2.0	22
71	The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany, 1998, 85, 1301-1315.	1.7	423
72	Monitoring Fluoride with Honey Bees in the Upper Snake River Plain of Idaho. Journal of Environmental Quality, 1996, 25, 868-877.	2.0	6

#	Article	IF	CITATIONS
73	Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. Journal of Molecular Evolution, 1996, 42, 685-705.	1.8	217
74	Inhibition of reverse transcriptase from feline immunodeficiency virus by analogs of 2â€2-deoxyadenosine-5â€2-triphosphate. Biochemical Pharmacology, 1992, 44, 1375-1381.	4.4	31

2â€²-deoxyadenosine-5â€²-triphosphate. Biochemical Pharmacology, 1992, 44, 1375-1381. 74