Richard C Cronn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4649-4654.	7.1	793
2	Polyploidy and the evolutionary history of cotton. Advances in Agronomy, 2003, 78, 139-186.	5.2	694
3	Navigating the tip of the genomic iceberg: Nextâ€generation sequencing for plant systematics. American Journal of Botany, 2012, 99, 349-364.	1.7	558
4	Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology, 2009, 7, 84.	3.8	504
5	The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany, 1998, 85, 1301-1315.	1.7	423
6	Hyb‣eq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences, 2014, 2, 1400042.	2.1	405
7	Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany, 2004, 17, 145.	0.9	367
8	Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Research, 2008, 36, e122-e122.	14.5	356
9	Rate Variation Among Nuclear Genes and the Age of Polyploidy in Gossypium. Molecular Biology and Evolution, 2003, 20, 633-643.	8.9	325
10	Rapid diversification of the cotton genus (<i>Gossypium</i> : Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. American Journal of Botany, 2002, 89, 707-725.	1.7	249
11	Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. Journal of Molecular Evolution, 1996, 42, 685-705.	1.8	217
12	Targeted enrichment strategies for nextâ€generation plant biology. American Journal of Botany, 2012, 99, 291-311.	1.7	212
13	Fossil Calibration of Molecular Divergence Infers a Moderate Mutation Rate and Recent Radiations for Pinus. Molecular Biology and Evolution, 2007, 24, 90-101.	8.9	197
14	Evolution and Natural History of the Cotton Genus. , 2009, , 3-22.		169
15	Widespread Genealogical Nonmonophyly in Species of Pinus Subgenus Strobus. Systematic Biology, 2007, 56, 163-181.	5.6	158
16	<i>Fragaria</i> : A genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany, 2014, 101, 1686-1699.	1.7	149
17	Comparative development of fiber in wild and cultivated cotton. Evolution & Development, 2001, 3, 3-17.	2.0	145
18	Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Molecular Phylogenetics and Evolution, 2013, 66, 17-29.	2.7	144

RICHARD C CRONN

#	Article	IF	CITATIONS
19	Feast and famine in plant genomes. Genetica, 2002, 115, 37-47.	1.1	135
20	Horizontal Transfer of DNA from the Mitochondrial to the Plastid Genome and Its Subsequent Evolution in Milkweeds (Apocynaceae). Genome Biology and Evolution, 2013, 5, 1872-1885.	2.5	129
21	Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution, 2009, 52, 498-511.	2.7	127
22	Cryptic trysts, genomic mergers, and plant speciation. New Phytologist, 2004, 161, 133-142.	7.3	124
23	What are the best seed sources for ecosystem restoration on BLM and USFS lands?. Native Plants Journal, 2010, 11, 117-131.	0.2	114
24	Pacific Northwest Forest Tree Seed Zones: A Template for Native Plants?. Native Plants Journal, 2004, 5, 131-140.	0.2	104
25	Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing. BMC Genomics, 2011, 12, 211.	2.8	104
26	The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 2017, 7, 3157-3167.	1.8	103
27	Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African <i>Oxalis</i> (Oxalidaceae). Molecular Ecology Resources, 2016, 16, 1124-1135.	4.8	101
28	Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evolutionary Biology, 2012, 12, 100.	3.2	96
29	Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytologist, 2019, 221, 2286-2297.	7.3	84
30	Evolutionary relationships among <i>Pinus</i> (Pinaceae) subsections inferred from multiple low opy nuclear loci. American Journal of Botany, 2005, 92, 2086-2100.	1.7	83
31	CRYPTIC REPEATED GENOMIC RECOMBINATION DURING SPECIATION IN GOSSYPIUM GOSSYPIOIDES. Evolution; International Journal of Organic Evolution, 2003, 57, 2475-2489.	2.3	77
32	Intron Size and Genome Size in Plants. Molecular Biology and Evolution, 2002, 19, 2346-2352.	8.9	67
33	Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: a case study in Pinus lambertiana. Molecular Ecology, 2007, 16, 3926-3937.	3.9	66
34	Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecology, 2011, 11, 10.	3.0	66
35	A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome, 2017, 60, 720-732.	2.0	64
36	eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications. Science of the Total Environment, 2019, 649, 1157-1170.	8.0	60

RICHARD C CRONN

#	Article	IF	CITATIONS
37	A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics, 2013, 14, 137.	2.8	55
38	Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes. Plant Systematics and Evolution, 2005, 252, 199-214.	0.9	52
39	PacBio-Based Mitochondrial Genome Assembly of Leucaena trichandra (Leguminosae) and an Intrageneric Assessment of Mitochondrial RNA Editing. Genome Biology and Evolution, 2018, 10, 2501-2517.	2.5	49
40	Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata). BMC Genomics, 2011, 12, 370.	2.8	46
41	Dual RNA-seq of the plant pathogen Phytophthora ramorum and its tanoak host. Tree Genetics and Genomes, 2014, 10, 489-502.	1.6	45
42	Adventures in the Enormous: A 1.8 Million Clone BAC Library for the 21.7 Gb Genome of Loblolly Pine. PLoS ONE, 2011, 6, e16214.	2.5	41
43	Length and sequence heterogeneity in 5S rDNA ofPopulus deltoides. Genome, 2002, 45, 1181-1188.	2.0	38
44	Targeted Capture Sequencing in Whitebark Pine Reveals Range-Wide Demographic and Adaptive Patterns Despite Challenges of a Large, Repetitive Genome. Frontiers in Plant Science, 2016, 7, 484.	3.6	38
45	Low Diversity in the Mitogenome of Sperm Whales Revealed by Next-Generation Sequencing. Genome Biology and Evolution, 2013, 5, 113-129.	2.5	37
46	Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles. BMC Genomics, 2017, 18, 558.	2.8	35
47	Comparative Transcriptomics Among Four White Pine Species. G3: Genes, Genomes, Genetics, 2018, 8, 1461-1474.	1.8	35
48	Development of Molecular Markers for Determining Continental Origin of Wood from White Oaks (Quercus L. sect. Quercus). PLoS ONE, 2016, 11, e0158221.	2.5	34
49	Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding. Molecular Ecology, 2021, 30, 4970-4990.	3.9	33
50	Source Identification of Western Oregon Douglas-Fir Wood Cores Using Mass Spectrometry and Random Forest Classification. Applications in Plant Sciences, 2017, 5, 1600158.	2.1	32
51	Inhibition of reverse transcriptase from feline immunodeficiency virus by analogs of 2′-deoxyadenosine-5′-triphosphate. Biochemical Pharmacology, 1992, 44, 1375-1381.	4.4	31
52	Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing. PLoS ONE, 2015, 10, e0145031.	2.5	28
53	An Axiom SNP genotyping array for Douglas-fir. BMC Genomics, 2020, 21, 9.	2.8	25
54	Quantitative Analysis of Transcript Accumulation from Genes Duplicated by Polyploidy Using cDNASSCP. BioTechniques, 2003, 34, 726-734.	1.8	23

RICHARD C CRONN

#	Article	IF	CITATIONS
55	Simple methods for isolating homoeologous loci from allopolyploid genomes. Genome, 1998, 41, 756-762.	2.0	22
56	Tangled trios?: Characterizing a hybrid zone inCastilleja(Orobanchaceae). American Journal of Botany, 2009, 96, 1519-1531.	1.7	21
57	An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines. BMC Evolutionary Biology, 2014, 14, 67.	3.2	21
58	Evolution at the tips: <i>Asclepias</i> phylogenomics and new perspectives on leaf surfaces. American Journal of Botany, 2018, 105, 514-524.	1.7	19
59	A draft genome and transcriptome of common milkweed (<i>Asclepias syriaca</i>) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ, 2019, 7, e7649.	2.0	19
60	Multiple Nuclear Loci Reveal the Distinctiveness of the Threatened, Neotropical <i>Pinus chiapensis</i> . Systematic Botany, 2007, 32, 703-717.	0.5	16
61	A New Species and Introgression in Eastern Asian Hemlocks (Pinaceae: <i>Tsuga</i>). Systematic Botany, 2017, 42, 733-746.	0.5	15
62	Genomic resources for the Neotropical tree genus Cedrela (Meliaceae) and its relatives. BMC Genomics, 2019, 20, 58.	2.8	15
63	Casting a broader net: Using microfluidic metagenomics to capture aquatic biodiversity data from diverse taxonomic targets. Environmental DNA, 2019, 1, 251-267.	5.8	12
64	Development of novel chloroplast microsatellite markers to identify species in the Agrostis complex (Poaceae) and related genera. Molecular Ecology Resources, 2010, 10, 738-740.	4.8	11
65	Predicting the geographic origin of Spanish Cedar (Cedrela odorata L.) based on DNA variation. Conservation Genetics, 2020, 21, 625-639.	1.5	11
66	Length polymorphism scanning is an efficient approach for revealing chloroplast DNA variation. Genome, 2006, 49, 134-142.	2.0	8
67	Transcriptome characterization and detection of gene expression differences in aspen (Populus) Tj ETQq1 1 0.78	4314 rgBT 1.6	/gverlock
68	Monitoring Fluoride with Honey Bees in the Upper Snake River Plain of Idaho. Journal of Environmental Quality, 1996, 25, 868-877.	2.0	6
69	CRYPTIC REPEATED GENOMIC RECOMBINATION DURING SPECIATION IN GOSSYPIUM GOSSYPIOIDES. Evolution; International Journal of Organic Evolution, 2003, 57, 2475.	2.3	6
70	Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA. BMC Genomics, 2018, 19, 896.	2.8	6
71	Microsatellite primers for the Pacific Northwest endemic conifer <i>Chamaecyparis lawsoniana</i> (Cupressaceae). American Journal of Botany, 2011, 98, e323-5.	1.7	3
72	Development of nuclear microsatellite loci for Pinus albicaulis Engelm. (Pinaceae), a conifer of conservation concern. PLoS ONE, 2018, 13, e0205423.	2.5	2

#	Article	IF	CITATIONS
73	Range-wide assessment of a SNP panel for individualization and geolocalization of bigleaf maple (Acer) Tj ETQq1	1 8.78431	4 ₁ gBT /Over
74	Microsatellite Primers for the Pacific Northwest ConiferCallitropsis nootkatensis(Cupressaceae). Applications in Plant Sciences, 2013, 1, 1300025.	2.1	0