Manosij Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/16367/publications.pdf

Version: 2024-02-01

201674 123424 4,171 82 27 61 citations h-index g-index papers 86 86 86 6378 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Exposure to silicates and systemic autoimmune-related outcomes in rodents: a systematic review. Particle and Fibre Toxicology, 2022, 19, 4.	6.2	7
2	The EXIMIOUS projectâ€"Mapping exposure-induced immune effects: connecting the exposome and the immunome. Environmental Epidemiology, 2022, 6, e193.	3.0	8
3	Applying the exposome concept to working life health. Environmental Epidemiology, 2022, 6, e185.	3.0	15
4	Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Archives of Toxicology, 2022, 96, 1141-1212.	4.2	8
5	Epigenetic Mechanisms in Understanding Nanomaterial-Induced Toxicity. Advances in Experimental Medicine and Biology, 2022, 1357, 195-223.	1.6	4
6	From inequitable to sustainable e-waste processing for reduction of impact on human health and the environment. Environmental Research, 2021, 194, 110728.	7.5	55
7	Effect of Graphene and Graphene Oxide on Airway Barrier and Differential Phosphorylation of Proteins in Tight and Adherens Junction Pathways. Nanomaterials, 2021, 11, 1283.	4.1	6
8	Maternal Vitamin D and Newborn Telomere Length. Nutrients, 2021, 13, 2012.	4.1	7
9	Assessing the Toxicological Relevance of Nanomaterial Agglomerates and Aggregates Using Realistic Exposure In Vitro. Nanomaterials, 2021, 11, 1793.	4.1	7
10	Interplay of Val66Met and BDNF methylation: effect on reward learning and cognitive performance in major depression. Clinical Epigenetics, 2021, 13, 149.	4.1	14
11	Quantum squirrel inspired algorithm for gene selection in methylation and expression data of prostate cancer. Applied Soft Computing Journal, 2021, 105, 107221.	7.2	16
12	Role of NR3C1 and SLC6A4 methylation in the HPA axis regulation in burnout. Journal of Affective Disorders, 2021, 295, 505-512.	4.1	7
13	Identifying nanodescriptors to predict the toxicity of nanomaterials: a case study on titanium dioxide. Environmental Science: Nano, 2021, 8, 580-590.	4.3	4
14	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 2	22 Td (editior 1,430
15	Telomere length and outcome of treatment for pulmonary tuberculosis in a gold mining community. Scientific Reports, 2021, 11, 4031.	3.3	4
16	S-135â€Applying the exposome concept to working-life health: The EU EPHOR project. , 2021, , .		0
17	S-234â€Strategies for monitoring of the internal exposome using self-sampling methods in the context of EU EPHOR project., 2021,,.		0
18	Agglomeration State of Titanium-Dioxide (TiO2) Nanomaterials Influences the Dose Deposition and Cytotoxic Responses in Human Bronchial Epithelial Cells at the Air-Liquid Interface. Nanomaterials, 2021, 11, 3226.	4.1	11

#	Article	IF	Citations
19	The Parental Pesticide and Offspring's Epigenome Study: Towards an Integrated Use of Human Biomonitoring of Exposure and Effect Biomarkers. Toxics, 2021, 9, 332.	3.7	1
20	Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. Journal of Pain, 2020, 21, 763-780.	1.4	35
21	Cytotoxic and genotoxic potential of respirable fraction of composite dust on human bronchial cells. Dental Materials, 2020, 36, 270-283.	3.5	13
22	Distinct autophagy-apoptosis related pathways activated by Multi-walled (NM 400) and Single-walled carbon nanotubes (NIST-SRM2483) in human bronchial epithelial (16HBE140-) cells. Journal of Hazardous Materials, 2020, 387, 121691.	12.4	15
23	Epigenetic perspective on the role of brain-derived neurotrophic factor in burnout. Translational Psychiatry, 2020, 10, 354.	4.8	15
24	The Interplay between Oxidative Stress, Exercise, and Pain in Health and Disease: Potential Role of Autonomic Regulation and Epigenetic Mechanisms. Antioxidants, 2020, 9, 1166.	5.1	32
25	Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible. International Journal of Environmental Research and Public Health, 2020, 17, 8832.	2.6	45
26	Increased methylation of NR3C1 and SLC6A4 is associated with blunted cortisol reactivity to stress in major depression. Neurobiology of Stress, 2020, 13, 100272.	4.0	25
27	DNA Methylation and Brainâ€Derived Neurotrophic Factor Expression Account for Symptoms and Widespread Hyperalgesia in Patients With Chronic Fatigue Syndrome and Comorbid Fibromyalgia. Arthritis and Rheumatology, 2020, 72, 1936-1944.	5.6	28
28	Induction and recovery of CpG site specific methylation changes in human bronchial cells after long-term exposure to carbon nanotubes and asbestos. Environment International, 2020, 137, 105530.	10.0	30
29	Exhaled Breath Analysis in Diagnosis of Malignant Pleural Mesothelioma: Systematic Review. International Journal of Environmental Research and Public Health, 2020, 17, 1110.	2.6	18
30	Increased telomere length and mtDNA copy number induced by multi-walled carbon nanotube exposure in the workplace. Journal of Hazardous Materials, 2020, 394, 122569.	12.4	10
31	The Influence of the Duration of Breastfeeding on the Infant's Metabolic Epigenome. Nutrients, 2019, 11, 1408.	4.1	29
32	Environmental and occupational genotoxins. Nucleus (India), 2019, 62, 189-190.	2.2	0
33	Photo-physical investigation of the binding interactions of alumina nanoparticles with calf thymus DNA. Nucleus (India), 2019, 62, 251-257.	2.2	4
34	Survival of human dental pulp cells after 4-week culture in human tooth model. Journal of Dentistry, 2019, 86, 33-40.	4.1	15
35	Carbon Nanotube- and Asbestos-Induced DNA and RNA Methylation Changes in Bronchial Epithelial Cells. Chemical Research in Toxicology, 2019, 32, 850-860.	3.3	28
36	O6D.2â€Evidence of dna methylation changes by carbon nanotubes in a translational study design. Occupational and Environmental Medicine, 2019, 76, A57.2-A57.	2.8	0

#	Article	IF	Citations
37	P.498 The role of brain-derived neurotrophic factor in the biological mechanisms of burnout: epigenetic perspective. European Neuropsychopharmacology, 2019, 29, S349.	0.7	O
38	Risk of Cancer for Workers Exposed to Antimony Compounds: A Systematic Review. International Journal of Environmental Research and Public Health, 2019, 16, 4474.	2.6	41
39	Genotoxicity of engineered nanoparticles in higher plants. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 842, 132-145.	1.7	43
40	The Micronucleus Assay as a Cytogenetic Biomarker of Ethylene Oxide Exposure. Issues in Toxicology, 2019, , 583-600.	0.1	0
41	Global and gene-specific DNA methylation effects of different asbestos fibres on human bronchial epithelial cells. Environment International, 2018, 115, 301-311.	10.0	10
42	Differences in MWCNT- and SWCNT-induced DNA methylation alterations in association with the nuclear deposition. Particle and Fibre Toxicology, 2018, 15, 11.	6.2	57
43	429â€Signature of epigenetic alterations induced by carbon nanotube- <i>in vitro</i> , <i>in vivo</i> and in workers., 2018,,.		0
44	Exposure to Polycyclic Aromatic Hydrocarbons Leads to Non-monotonic Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Scientific Reports, 2018, 8, 10577.	3.3	24
45	Methods of In Vitro and In Vivo Nanotoxicity Evaluation in Plants. , 2018, , 281-304.		1
46	Single-walled and multi-walled carbon nanotubes induce sequence-specific epigenetic alterations in 16 HBE cells. Oncotarget, 2018, 9, 20351-20365.	1.8	21
47	Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clinical Epigenetics, 2017, 9, 16.	4.1	129
48	Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO 2 -np in bronchial epithelial (16-HBE) cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 796, 1-12.	1.0	35
49	Hazard identification of coal fly ash leachate using a battery of cyto-genotoxic and biochemical tests in <i>Allium cepa</i> . Archives of Agronomy and Soil Science, 2017, 63, 1443-1453.	2.6	20
50	Remediation of Mine Tailings and Fly Ash Dumpsites: Role of Poaceae Family Members and Aromatic Grasses., 2017,, 117-167.		3
51	The effect of paternal methyl-group donor intake on offspring DNA methylation and birth weight. Journal of Developmental Origins of Health and Disease, 2017, 8, 311-321.	1.4	21
52	Epigenetic effects of carbon nanotubes in human monocytic cells. Mutagenesis, 2017, 32, 181-191.	2.6	46
53	Comprehensive analysis of fly ash induced changes in physiological/growth parameters, DNA damage and oxidative stress over the life cycle of Brassica juncea and Brassica alba. Chemosphere, 2017, 186, 616-624.	8.2	5
54	Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace. Nanotoxicology, 2017, 11, 1195-1210.	3.0	41

#	Article	IF	Citations
55	Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics, 2017 , 12 , $1-10$.	2.7	112
56	Genotoxicity of antiobesity drug orlistat and effect of caffeine intervention: an <i>in vitro</i> study. Drug and Chemical Toxicology, 2017, 40, 339-343.	2.3	10
57	Green conversion of graphene oxide to graphene nanosheets and its biosafety study. PLoS ONE, 2017, 12, e0171607.	2.5	28
58	O18-1â€Epigenetic effects of occupational exposure to carbon nanotubes. , 2016, , .		0
59	Genotoxicity of ethylene oxide: A review of micronucleus assay results in human population. Mutation Research - Reviews in Mutation Research, 2016, 770, 84-91.	5.5	14
60	Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 807, 25-32.	1.7	158
61	Cyto-genotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte cells inÂvitro and Swiss albino male mice inÂvivo. Food and Chemical Toxicology, 2016, 97, 286-296.	3.6	65
62	Body distribution of SiO ₂ –Fe ₃ O ₄ core-shell nanoparticles after intravenous injection and intratracheal instillation. Nanotoxicology, 2016, 10, 567-574.	3.0	17
63	Biological activity of dendrimer–methylglyoxal complexes for improved therapeutic efficacy against malignant cells. RSC Advances, 2016, 6, 6631-6642.	3.6	8
64	DNA methylation changes in workers occupational exposed to carbon nanotubes. , 2016, , .		2
65	Vetiver oil (Java) attenuates cisplatin-induced oxidative stress, nephrotoxicity and myelosuppression in Swiss albino mice. Food and Chemical Toxicology, 2015, 81, 120-128.	3.6	29
66	MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 774, 49-58.	1.0	129
67	Antimutagenic and genoprotective effects of Saraca asoca bark extract. Toxicology and Industrial Health, 2015, 31, 696-703.	1.4	14
68	Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecological Engineering, 2015, 74, 258-265.	3.6	49
69	Sodium Fluoride Promotes Apoptosis by Generation of Reactive Oxygen Species in Human Lymphocytes. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 1269-1280.	2.3	36
70	Evaluation of toxicity of essential oils palmarosa, citronella, lemongrass and vetiver in human lymphocytes. Food and Chemical Toxicology, 2014, 68, 71-77.	3 . 6	96
71	Genotoxicity evaluation of 4-carboxyl- 2,6-dinitrophenylazohydroxynaphthalenes in mice. Toxicology and Industrial Health, 2014, 30, 393-404.	1.4	1
	and the control of th		

#	Article	IF	CITATIONS
73	Evaluation of multi-endpoint assay to detect genotoxicity and oxidative stress in mice exposed to sodium fluoride. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 751, 59-65.	1.7	48
74	Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO ₂) nanoparticles on human erythrocyte and lymphocyte cells <i>in vitro</i> . Journal of Applied Toxicology, 2013, 33, 1097-1110.	2.8	109
75	Vivipary in Hedychium elatum (Zingiberaceae). Phytotaxa, 2013, 130, 55.	0.3	4
76	In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 749, 60-69.	1.7	194
77	Studies of the interactions of 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes with CT-DNA in aqueous medium. Journal of Molecular Liquids, 2012, 174, 17-25.	4.9	4
78	Spectrophotometric and thermodynamic studies of the interactions of 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes with bovine serum albumin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 1038-1046.	3.9	2
79	Multi-walled carbon nanotubes (MWCNT): Induction of DNA damage in plant and mammalian cells. Journal of Hazardous Materials, 2011, 197, 327-336.	12.4	109
80	High-altitude medicines: A short-term genotoxicity study. Toxicology and Industrial Health, 2010, 26, 417-424.	1.4	7
81	Comparative evaluation of promutagens o-PDA, m-PDA and MH for genotoxic response in root cells of Allium cepa L Nucleus (India), 2010, 53, 45-50.	2.2	5
82	Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere, 2010, 81, 1253-1262.	8.2	397