Elke Arendt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1636130/publications.pdf

Version: 2024-02-01

363 20,190 citations

76 h-index 118 g-index

365 all docs 365 docs citations 365 times ranked 11867 citing authors

#	Article	IF	CITATIONS
1	Impact of sourdough on the texture of bread. Food Microbiology, 2007, 24, 165-174.	4.2	475
2	Brewers' spent grain: a review with an emphasis on food and health. Journal of the Institute of Brewing, 2016, 122, 553-568.	2.3	407
3	Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Science and Emerging Technologies, 2012, 16, 1-10.	5.6	326
4	Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 2009, 60, 240-257.	2.8	287
5	Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 2016, 100, 1121-1135.	3.6	280
6	Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 2007, 45, 309-318.	3.7	278
7	Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Science, 2002, 62, 205-216.	5.5	264
8	Potential of sourdough for healthier cereal products. Trends in Food Science and Technology, 2005, 16, 104-112.	15.1	257
9	Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients. Applied and Environmental Microbiology, 2004, 70, 1088-1096.	3.1	236
10	Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 2010, 230, 437-445.	3.3	232
11	Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. International Journal of Food Microbiology, 2000, 60, 241-249.	4.7	230
12	Network Formation in Gluten-Free Bread with Application of Transglutaminase. Cereal Chemistry, 2006, 83, 28-36.	2.2	229
13	Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocolloids, 2013, 32, 195-203.	10.7	226
14	Sourdough in gluten-free bread-making: An ancient technology to solve a novel issue?. Food Microbiology, 2009, 26, 676-684.	4.2	221
15	Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. Journal of Cereal Science, 2012, 56, 239-247.	3.7	220
16	Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. Journal of Cereal Science, 2008, 48, 33-45.	3.7	211
17	Gluten-Free Bread from Sorghum: Quality Differences Among Hybrids. Cereal Chemistry, 2005, 82, 394-404.	2.2	209
18	Buckwheat. Cereal Chemistry, 2006, 83, 391-401.	2.2	209

#	Article	IF	CITATIONS
19	Textural Comparisons of Gluten-Free and Wheat-Based Doughs, Batters, and Breads. Cereal Chemistry, 2004, 81, 567-575.	2.2	205
20	Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. European Food Research and Technology, 2012, 235, 333-344.	3.3	204
21	Exopolysaccharide-Forming <i>Weissella</i> Strains as Starter Cultures for Sorghum and Wheat Sourdoughs. Journal of Agricultural and Food Chemistry, 2010, 58, 5834-5841.	5.2	191
22	Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annual Review of Food Science and Technology, 2018, 9, 155-176.	9.9	185
23	Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Research International, 2018, 110, 42-51.	6.2	177
24	Exopolysaccharides from Sourdough Lactic Acid Bacteria. Critical Reviews in Food Science and Nutrition, 2014, 54, 891-901.	10.3	174
25	Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. International Journal of Food Microbiology, 2012, 155, 105-112.	4.7	157
26	Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiology, 2014, 37, 78-95.	4.2	157
27	Influence of the soluble fibres inulin and oat \hat{l}^2 -glucan on quality of dough and bread. European Food Research and Technology, 2011, 232, 405-413.	3.3	156
28	Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods for Human Nutrition, 2017, 72, 26-33.	3.2	156
29	Application of Response Surface Methodology in the Development of Gluten-Free Bread. Cereal Chemistry, 2005, 82, 609-615.	2.2	154
30	Effect of Single Strain and Traditional Mixed Strain Starter Cultures on Rheological Properties of Wheat Dough and on Bread Quality. Cereal Chemistry, 2002, 79, 640-647.	2.2	150
31	Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. International Journal of Food Microbiology, 2011, 146, 276-283.	4.7	145
32	Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiology, 2011, 28, 497-502.	4.2	139
33	Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Research International, 2018, 110, 52-61.	6.2	138
34	The increasing use of barley and barley by-products in the production of healthier baked goods. Trends in Food Science and Technology, 2013, 29, 124-134.	15.1	134
35	Starch Characteristics Linked to Gluten-Free Products. Foods, 2017, 6, 29.	4.3	132
36	Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 2017, 57, 3528-3542.	10.3	131

#	Article	IF	Citations
37	Cereal grains for the food and beverage industries. , 2013, , .		131
38	Proteins in Oats; their Synthesis and Changes during Germination: A Review. Critical Reviews in Food Science and Nutrition, 2012, 52, 629-639.	10.3	130
39	The Impact of Salt Reduction in Bread: A Review. Critical Reviews in Food Science and Nutrition, 2012, 52, 514-524.	10.3	128
40	Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer's spent grain enrichment. European Food Research and Technology, 2012, 235, 767-778.	3.3	124
41	The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. International Journal of Food Microbiology, 2008, 125, 274-278.	4.7	122
42	InÂvitro starch digestibility and predicted glycaemic indexes of buckwheat, oat, quinoa, sorghum, teff and commercial gluten-free bread. Journal of Cereal Science, 2013, 58, 431-436.	3.7	120
43	The effect of storage time on textural and crumb grain characteristics of sourdough wheat bread. European Food Research and Technology, 2002, 214, 489-496.	3.3	118
44	The effect of dairy and rice powder addition on loaf and crumb characteristics, and on shelf life (intermediate and long-term) of gluten-free breads stored in a modified atmosphere. European Food Research and Technology, 2003, 218, 44-48.	3.3	118
45	Germination of Cereal Grains as a Way to Improve the Nutritional Value: A Review. Critical Reviews in Food Science and Nutrition, 2013, 53, 853-861.	10.3	118
46	Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends in Food Science and Technology, 2016, 54, 17-25.	15.1	118
47	Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Annual Review of Food Science and Technology, 2017, 8, 75-96.	9.9	117
48	Sourdough fermented by Lactobacillus plantarum FSTÂ1.7 improves the quality and shelf life of gluten-free bread. European Food Research and Technology, 2008, 226, 1309-1316.	3.3	116
49	Comparison of Faba Bean Protein Ingredients Produced Using Dry Fractionation and Isoelectric Precipitation: Techno-Functional, Nutritional and Environmental Performance. Foods, 2020, 9, 322.	4.3	116
50	Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 587-625.	11.7	110
51	Lactic Acid Bacteria as a Cell Factory for the Delivery of Functional Biomolecules and Ingredients in Cereal-Based Beverages: A Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 503-520.	10.3	109
52	Wheat Sourdough Fermentation: Effects of Time and Acidification on Fundamental Rheological Properties. Cereal Chemistry, 2004, 81, 409-417.	2.2	108
53	Gluten free beer – AÂreview. Trends in Food Science and Technology, 2014, 36, 44-54.	15.1	108
54	Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiology, 2014, 37, 44-50.	4.2	107

#	Article	IF	CITATIONS
55	Effects of high pressure and temperature on the structural and rheological properties of sorghum starch. Innovative Food Science and Emerging Technologies, 2009, 10, 449-456.	5.6	106
56	Molecular characterization of lactococcal bacteriophage Tuc2009 and identification and analysis of genes encoding lysin, a putative holin, and two structural proteins. Applied and Environmental Microbiology, 1994, 60, 1875-1883.	3.1	103
57	Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. International Journal of Food Microbiology, 2014, 172, 83-91.	4.7	98
58	Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiology, 2015, 47, 36-44.	4.2	98
59	A review of polyols – biotechnological production, food applications, regulation, labeling and health effects. Critical Reviews in Food Science and Nutrition, 2020, 60, 2034-2051.	10.3	96
60	Influence of Additives and Mixing Time on Crumb Grain Characteristics of Wheat Bread. Cereal Chemistry, 2000, 77, 370-375.	2.2	92
61	Influence of Gallic Acid and Tannic Acid on the Mechanical and Barrier Properties of Wheat Gluten Films. Journal of Agricultural and Food Chemistry, 2012, 60, 6157-6163.	5.2	91
62	The Use and Effects of Lactic Acid Bacteria in Malting and Brewing with Their Relationships to Antifungal Activity, Mycotoxins and Gushing: A Review. Journal of the Institute of Brewing, 2004, 110, 163-180.	2.3	90
63	Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Applied Microbiology and Biotechnology, 2016, 100, 1701-1711.	3.6	89
64	Gluten-free breads. , 2008, , 289-VII.		88
65	Nutritional therapy – Facing the gap between coeliac disease and gluten-free food. International Journal of Food Microbiology, 2016, 239, 113-124.	4.7	88
66	"Green Preservatives― Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. Advances in Food and Nutrition Research, 2012, 66, 217-238.	3.0	87
67	Influence of sourdough on in vitro starch digestibility and predicted glycemic indices of gluten-free breads. Food and Function, 2014, 5, 564.	4.6	86
68	State of the Art in Glutenâ€Free Research. Journal of Food Science, 2014, 79, R1067-76.	3.1	86
69	Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. International Journal of Food Microbiology, 2018, 268, 19-26.	4.7	86
70	Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microbial Cell Factories, 2011, 10, S15.	4.0	85
71	Determination of the influence of organic acids and nisin on shelfâ€life and microbiologicalsafety aspects of fresh pork sausage. Journal of Applied Microbiology, 1997, 83, 407-412.	3.1	84
72	Impact of emulsifiers on the quality and rheological properties of gluten-free breads and batters. European Food Research and Technology, 2009, 228, 633-642.	3.3	84

#	Article	IF	Citations
73	Physicochemical and acid gelation properties of commercial UHT-treated plant-based milk substitutes and lactose free bovine milk. Food Chemistry, 2015, 168, 630-638.	8.2	84
74	Rheological properties and bread making performance of commercial wholegrain oat flours. Journal of Cereal Science, 2010, 52, 65-71.	3.7	83
75	Applications of microbial fermentations for production of gluten-free products and perspectives. Applied Microbiology and Biotechnology, 2012, 93, 473-485.	3.6	83
76	Common wheat (<i>Triticum aestivum</i> L.) and its use as a brewing cereal - a review. Journal of the Institute of Brewing, 2014, 120, 1-15.	2.3	83
77	An update on water kefir: Microbiology, composition and production. International Journal of Food Microbiology, 2021, 345, 109128.	4.7	83
78	Effects of Lactic Acid, Acetic Acid, and Table Salt on Fundamental Rheological Properties of Wheat Dough. Cereal Chemistry, 1997, 74, 739-744.	2.2	80
79	Effect of low lactose dairy powder addition on the properties of gluten-free batters and bread quality. European Food Research and Technology, 2009, 229, 31-41.	3.3	80
80	Recent advances in gluten-free baking and the current status of oats. Trends in Food Science and Technology, 2010, 21, 303-312.	15.1	79
81	Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value. Food Chemistry, 2016, 196, 17-24.	8.2	78
82	Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends in Food Science and Technology, 2021, 110, 364-374.	15.1	78
83	Effect of Lactic Acid Bacteria on Properties of Glutenâ€Free Sourdoughs, Batters, and Quality and Ultrastructure of Glutenâ€Free Bread. Cereal Chemistry, 2007, 84, 357-364.	2.2	76
84	Fundamental study on the influence of Fusarium infection on quality and ultrastructure of barley malt. International Journal of Food Microbiology, 2012, 156, 32-43.	4.7	75
85	Current status of salt reduction in bread and bakery products – A review. Journal of Cereal Science, 2016, 72, 135-145.	3.7	7 5
86	Chance and Challenge: Non- <i>Saccharomyces</i> Yeasts in Nonalcoholic and Low Alcohol Beer Brewing – A Review. Journal of the American Society of Brewing Chemists, 2019, 77, 77-91.	1.1	74
87	Influence of gluten-free flour mixes and fat powders on the quality of gluten-free biscuits. European Food Research and Technology, 2003, 216, 369-376.	3.3	73
88	Barley malt wort fermentation by exopolysaccharide-forming <i>>Weissella cibaria </i> MG1 for the production of a novel beverage. Journal of Applied Microbiology, 2013, 115, 1379-1387.	3.1	73
89	Correlations Between Empirical and Fundamental Rheology Measurements and Baking Performance of Frozen Bread Dough. Cereal Chemistry, 1999, 76, 421-425.	2.2	72
90	Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiology, 2011, 28, 547-553.	4.2	72

#	Article	IF	Citations
91	Impact of <i> Saccharomyces cerevisiae </i> metabolites produced during fermentation on bread quality parameters: A review. Critical Reviews in Food Science and Nutrition, 2018, 58, 1152-1164.	10.3	72
92	Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer. Fermentation, 2018, 4, 66.	3.0	72
93	Functional Replacements for Gluten. Annual Review of Food Science and Technology, 2012, 3, 227-245.	9.9	71
94	Fundamental study on protein changes taking place during malting of oats. Journal of Cereal Science, 2009, 49, 83-91.	3.7	69
95	Effects of oxidase and protease treatments on the breadmaking functionality of a range of gluten-free flours. European Food Research and Technology, 2009, 229, 307-317.	3.3	69
96	The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. European Food Research and Technology, 2010, 231, 27-35.	3.3	69
97	Recent advances in microbial fermentation for dairy and health. F1000Research, 2017, 6, 751.	1.6	69
98	Comparative analysis of plant-based high-protein ingredients and their impact on quality of high-protein bread. Journal of Cereal Science, 2019, 89, 102816.	3.7	69
99	An Effective Lacticin Biopreservative in Fresh Pork Sausage. Journal of Food Protection, 2000, 63, 370-375.	1.7	67
100	Optimisation of a Mashing Program for 100% Malted Buckwheat. Journal of the Institute of Brewing, 2006, 112, 57-65.	2.3	66
101	Germination of Oat and Quinoa and Evaluation of the Malts as Gluten Free Baking Ingredients. Plant Foods for Human Nutrition, 2013, 68, 90-95.	3.2	66
102	Influence of Sodium Caseinate and Whey Protein on Baking Properties and Rheology of Frozen Dough. Cereal Chemistry, 2001, 78, 458-463.	2.2	64
103	Impact of dairy protein powders on biscuit quality. European Food Research and Technology, 2005, 221, 237-243.	3.3	64
104	Rheological Changes in Wheat Sourdough During Controlled and Spontaneous Fermentation. Cereal Chemistry, 1998, 75, 882-886.	2.2	63
105	Impact of sourdough on buckwheat flour, batter and bread: Biochemical, rheological and textural insights. Journal of Cereal Science, 2011, 54, 195-202.	3.7	63
106	The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. International Journal of Food Microbiology, 2010, 141, 116-121.	4.7	62
107	The effect of sourdough and calcium propionate on the microbial shelf-life of salt reduced bread. Applied Microbiology and Biotechnology, 2012, 96, 493-501.	3.6	62
108	Impact of Baking on Vitamin E Content of Pseudocereals Amaranth, Quinoa, and Buckwheat. Cereal Chemistry, 2009, 86, 511-515.	2.2	61

#	Article	IF	Citations
109	Detection and Quantitation of 2,5-Diketopiperazines in Wheat Sourdough and Bread. Journal of Agricultural and Food Chemistry, 2009, 57, 9563-9568.	5.2	60
110	Starch properties, inÂvitro digestibility and sensory evaluation of fresh egg pasta produced from oat, teff and wheat flour. Journal of Cereal Science, 2013, 58, 156-163.	3.7	60
111	Brewer's Spent Yeast (BSY), an Underutilized Brewing By-Product. Fermentation, 2020, 6, 123.	3.0	60
112	Use of response surface methodology to produce functional short dough biscuits. Journal of Food Engineering, 2003, 56, 269-271.	5.2	59
113	Promoting structure formation by high pressure in gluten-free flours. LWT - Food Science and Technology, 2011, 44, 1672-1680.	5. 2	59
114	Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. International Journal of Food Microbiology, 2016, 239, 86-94.	4.7	59
115	Identification of int and attP on the genome of lactococcal bacteriophage Tuc2009 and their use for site-specific plasmid integration in the chromosome of Tuc2009-resistant Lactococcus lactis MG1363. Applied and Environmental Microbiology, 1994, 60, 2324-2329.	3.1	59
116	Incorporation of dairy ingredients into wheat bread: effects on dough rheology and bread quality. European Food Research and Technology, 2000, 210, 391-396.	3.3	58
117	Formation, stability, and sensory characteristics of a lentil-based milk substitute as affected by homogenisation and pasteurisation. European Food Research and Technology, 2019, 245, 1519-1531.	3.3	58
118	Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 435-452.	11.7	58
119	Sugar reduction in bakery products: Current strategies and sourdough technology as a potential novel approach. Food Research International, 2019, 126, 108583.	6.2	57
120	Barley Protein Properties, Extraction and Applications, with a Focus on Brewers' Spent Grain Protein. Foods, 2021, 10, 1389.	4.3	57
121	Development of buckwheat and teff sourdoughs with the use of commercial starters. International Journal of Food Microbiology, 2010, 142, 142-148.	4.7	56
122	Impact of sourdough fermented with Lactobacillus plantarum FST 1.7 on baking and sensory properties of gluten-free breads. European Food Research and Technology, 2014, 239, 1-12.	3.3	56
123	Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. International Dairy Journal, 2014, 34, 125-134.	3.0	55
124	A Review of the Application of Sourdough Technology to Wheat Breads. Advances in Food and Nutrition Research, 2005, 49, 137-161.	3.0	54
125	Recent Advances in Physical Post-Harvest Treatments for Shelf-Life Extension of Cereal Crops. Foods, 2018, 7, 45.	4.3	53
126	Processing of a Top Fermented Beer Brewed from 100% Buckwheat Malt with Sensory and Analytical Characterisation. Journal of the Institute of Brewing, 2010, 116, 265-274.	2.3	51

#	Article	IF	Citations
127	The utilisation of barley middlings to add value and health benefits to white breads. Journal of Food Engineering, 2011, 105, 493-502.	5.2	50
128	Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Applied Microbiology and Biotechnology, 2012, 96, 37-48.	3.6	50
129	Identification of lactic acid bacteria isolated from oat sourdoughs and investigation into their potential for the improvement of oat bread quality. European Food Research and Technology, 2010, 230, 849-857.	3.3	49
130	Comparison of the impact of dextran and reuteran on the quality of wheat sourdough bread. Journal of Cereal Science, 2012, 56, 531-537.	3.7	49
131	The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria cultures. Talanta, 2014, 129, 364-373.	5 . 5	49
132	Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1327-1360.	11.7	49
133	Techno-Functional, Nutritional and Environmental Performance of Protein Isolates from Blue Lupin and White Lupin. Foods, 2020, 9, 230.	4.3	49
134	The Impact of Kilning on Enzymatic Activity of Buckwheat Malt. Journal of the Institute of Brewing, 2005, 111, 290-298.	2.3	48
135	Fundamental Study on the Impact of Gluten-Free Starches on the Quality of Gluten-Free Model Breads. Foods, 2016, 5, 30.	4.3	48
136	Membrane filtration and isoelectric precipitation technological approaches for the preparation of novel, functional and sustainable protein isolate from lentils. European Food Research and Technology, 2019, 245, 1855-1869.	3.3	48
137	Nutritional properties and health aspects of pulses and their use in plantâ€based yogurt alternatives. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3858-3880.	11.7	48
138	Impact of fungal contamination of wheat on grain quality criteria. Journal of Cereal Science, 2016, 69, 95-103.	3.7	47
139	Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Analytical and Bioanalytical Chemistry, 2012, 403, 2983-2995.	3.7	46
140	Kinetics of Sodium Release from Wheat Bread Crumb As Affected by Sodium Distribution. Journal of Agricultural and Food Chemistry, 2013, 61, 10659-10669.	5.2	46
141	Identification of the putative repressor-encoding gene cl of the temperate lactococcal bacteriophage Tuc2009. Gene, 1994, 144, 93-95.	2.2	44
142	Fundamental evaluation of the impact of high Hydrostatic Pressure on oat batters. Journal of Cereal Science, 2009, 49, 363-370.	3.7	44
143	Correlation analysis of protein quality characteristics with gluten-free bread properties. Food and Function, 2017, 8, 2465-2474.	4.6	44
144	Water absorption as a prediction tool for the application of hydrocolloids in potato starch-based bread. Food Hydrocolloids, 2018, 81, 129-138.	10.7	44

#	Article	lF	CITATIONS
145	Optimization and Validation of an HPAEC-PAD Method for the Quantification of FODMAPs in Cereals and Cereal-Based Products. Journal of Agricultural and Food Chemistry, 2019, 67, 4384-4392.	5.2	44
146	Use of response surface methodology to investigate the effects of processing conditions on sourdough wheat bread quality. European Food Research and Technology, 2003, 217, 23-33.	3.3	43
147	Fundamental rheological and textural properties of doughs and breads produced from milled pearled barley flour. European Food Research and Technology, 2010, 231, 441-453.	3.3	43
148	Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range. Plant Foods for Human Nutrition, 2015, 70, 250-256.	3.2	43
149	Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control, 2018, 88, 139-148.	5.5	43
150	Transglutaminase polymerisation of buckwheat (Fagopyrum esculentum Moench) proteins. Journal of Cereal Science, 2008, 48, 747-754.	3.7	42
151	Fundamental study on the effect of hydrostatic pressure treatment on the bread-making performance of oat flour. European Food Research and Technology, 2010, 230, 827-835.	3.3	42
152	Application of Lactobacillus amylovorus as an antifungal adjunct toÂextend the shelf-life of Cheddar cheese. International Dairy Journal, 2014, 34, 167-173.	3.0	42
153	High pressure–treated sorghum flour as a functional ingredient in the production of sorghum bread. European Food Research and Technology, 2010, 231, 711-717.	3.3	41
154	Oat malt as a baking ingredient – A comparative study of the impact of oat, barley and wheat malts on bread and dough properties. Journal of Cereal Science, 2012, 56, 747-753.	3.7	41
155	Pressure-Induced Gelatinization of Starch in Excess Water. Critical Reviews in Food Science and Nutrition, 2014, 54, 399-409.	10.3	41
156	Genomics of Weissella cibaria with an examination of its metabolic traits. Microbiology (United) Tj ETQq0 0 0 rgE	3T <u> Q</u> verlo	ck 10 Tf 50 3
157	Heme-dependent and heme-independent nitrite reduction by lactic acid bacteria results in different N-containing products. International Journal of Food Microbiology, 1990, 10, 323-329.	4.7	40
158	Molecular and transcriptional analysis of the temperate lactococcal bacteriophage Tuc2009. Virology, 2004, 329, 40-52.	2.4	40
159	Exploitation of buckwheat sourdough for the production of wheat bread. European Food Research and Technology, 2012, 235, 659-668.	3.3	40
160	Transglutaminase treatment of brown rice flour: A chromatographic, electrophoretic and spectroscopic study of protein modifications. Food Chemistry, 2012, 131, 1076-1085.	8.2	40
161	The Effect of Germination Temperature on Malt Quality of Buckwheat. Journal of the American Society of Brewing Chemists, 2005, 63, 31-36.	1.1	39
162	The application of dextran compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. European Food Research and Technology, 2014, 238, 763-771.	3.3	39

#	Article	IF	Citations
163	Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control, 2016, 69, 227-236.	5.5	39
164	Optimization of baking parameters of partâ€baked and rebaked Irish brown soda bread by evaluation of some quality characteristics. International Journal of Food Science and Technology, 1997, 32, 487-493.	2.7	38
165	Nonbrewing Applications of Malted Cereals, Pseudocereals, and Legumes: A Review. Journal of the American Society of Brewing Chemists, 2015, 73, 223-227.	1.1	38
166	Characterization of the FODMAP-profile in cereal-product ingredients. Journal of Cereal Science, 2020, 92, 102916.	3.7	38
167	Use of Two-Dimensional Electrophoresis To Evaluate Proteolysis in Salmon (Salmo salar) Muscle As Affected by a Lactic Fermentation. Journal of Agricultural and Food Chemistry, 2000, 48, 239-244.	5.2	37
168	Model studies for wheat sourdough systems using gluten, lactate buffer and sodium chloride. European Food Research and Technology, 2003, 217, 235-243.	3.3	37
169	The Use of Response Surface Methodology to Optimise Malting Conditions of Proso Millet (Panicum) Tj ETQq1 1 280-292.	0.784314 2.3	4 rgBT /Overl 37
170	Development of gluten-free fresh egg pasta based on oat and teff flour. European Food Research and Technology, 2012, 235, 861-871.	3.3	37
171	Xylitol, mannitol and maltitol as potential sucrose replacers in burger buns. Food and Function, 2018, 9, 2201-2212.	4.6	37
172	Lachancea fermentati Strains Isolated From Kombucha: Fundamental Insights, and Practical Application in Low Alcohol Beer Brewing. Frontiers in Microbiology, 2020, 11, 764.	3.5	37
173	Brewing with 100% Oat Malt. Journal of the Institute of Brewing, 2011, 117, 411-421.	2.3	36
174	Future of antimicrobial peptides derived from plants in food application – A focus on synthetic peptides. Trends in Food Science and Technology, 2021, 112, 312-324.	15.1	36
175	Arabinoxylans as Functional Food Ingredients: A Review. Foods, 2022, 11, 1026.	4.3	36
176	The Effect of Steeping Time on the Final Malt Quality of Buckwheat. Journal of the Institute of Brewing, 2005, 111, 275-281.	2.3	35
177	Continuous production of lacticin 3147 and nisin using cells immobilized in calcium alginate. Journal of Applied Microbiology, 2000, 89, 573-579.	3.1	33
178	Optimization of Mashing Conditions When Mashing with Unmalted Sorghum and Commercial Enzymes. Journal of the American Society of Brewing Chemists, 2003, 61, 69-78.	1,1	33
179	Effects of high pressure and temperature on buckwheat starch characteristics. European Food Research and Technology, 2009, 230, 343-351.	3.3	33
180	Inhibition of growth of Trichophyton tonsurans by Lactobacillus reuteri. Journal of Applied Microbiology, 2011, 111, 474-483.	3.1	33

#	Article	IF	Citations
181	Understanding high pressure-induced changes in wheat flour–water suspensions using starch–gluten mixtures as model systems. Food Research International, 2010, 43, 893-901.	6.2	32
182	The rheology, microstructure and sensory characteristics of a gluten-free bread formulation enhanced with orange pomace. Food and Function, 2013, 4, 1856.	4.6	32
183	Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Critical Reviews in Food Science and Nutrition, 2017, 57, 259-274.	10.3	32
184	Leuconostoc citreum TR116: In-situ production of mannitol in sourdough and its application to reduce sugar in burger buns. International Journal of Food Microbiology, 2019, 302, 80-89.	4.7	32
185	Nutritional and anti-nutritional properties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing. Food Chemistry: X, 2021, 9, 100112.	4.3	32
186	Moisture Distribution and Microbial Quality of Part Baked Breads as Related to Storage and Rebaking Conditions. Journal of Food Science, 1999, 64, 543-546.	3.1	31
187	Optimisation of the Mashing Procedure for 100% Malted Proso Millet (Panicum miliaceum L.) as a Raw Material for Gluten-free Beverages and Beers. Journal of the Institute of Brewing, 2010, 116, 141-150.	2.3	31
188	Effects of cereal \hat{l}^2 -glucans and enzyme inclusion on the porcine gastrointestinal tract microbiota. Anaerobe, 2012, 18, 557-565.	2.1	31
189	Antifungal activity of Lactobacillus against <i>Microsporum canis</i> , <i>Microsporum gypseum</i> and <i>Epidermophyton floccosum</i> . Bioengineered, 2012, 3, 104-113.	3.2	31
190	Lactic acid bacteria bioprotection applied to the malting process. Part I: Strain characterization and identification of antifungal compounds. Food Control, 2015, 51, 433-443.	5.5	31
191	Optimisation of the antifungal potency of the amidated peptide H-Orn-Orn-Trp-Trp-NH2 against food contaminants. International Journal of Food Microbiology, 2018, 265, 40-48.	4.7	31
192	Improvement of taste and shelf life of yeasted low-salt bread containing functional sourdoughs using Lactobacillus amylovorus DSM 19280 and Weisella cibaria MG1. International Journal of Food Microbiology, 2019, 302, 69-79.	4.7	31
193	Study on the characterisation and application of synthetic peptide Snakin-1 derived from potato tubers $\hat{a} \in \text{``Action against food spoilage yeast. Food Control, 2020, 118, 107362.}$	5.5	31
194	Rejuvenated Brewer's Spent Grain: The impact of two BSG-derived ingredients on techno-functional and nutritional characteristics of fibre-enriched pasta. Innovative Food Science and Emerging Technologies, 2021, 68, 102633.	5.6	31
195	Wheat bread biofortification with rootlets, a malting byâ€product. Journal of the Science of Food and Agriculture, 2013, 93, 2372-2383.	3.5	29
196	Purification and Characterisation of a \hat{l}^2 -1,4-Xylanase from Remersonia thermophila CBS 540.69 and Its Application in Bread Making. Applied Biochemistry and Biotechnology, 2014, 172, 1747-1762.	2.9	29
197	Characterization of phage isolates from a phage-carrying culture of Leuconostoc oenos 58N. Applied Microbiology and Biotechnology, 1990, 34, 220-224.	3.6	28
198	Lactic acid bacteria bioprotection applied to the malting process. Part II: Substrate impact and mycotoxin reduction. Food Control, 2015, 51, 444-452.	5.5	28

#	Article	IF	Citations
199	Polyol-producing lactic acid bacteria isolated from sourdough and their application to reduce sugar in a quinoa-based milk substitute. International Journal of Food Microbiology, 2018, 286, 31-36.	4.7	28
200	Impact of protease and amylase treatment on proteins and the product quality of a quinoa-based milk substitute. Food and Function, 2018, 9, 3500-3508.	4.6	28
201	Screening and Application of Cyberlindnera Yeasts to Produce a Fruity, Non-Alcoholic Beer. Fermentation, 2019, 5, 103.	3.0	28
202	Application of Biological Acidification to Improve the Quality and Processability of Wort Produced from 50% Raw Barley. Journal of the Institute of Brewing, 2004, 110, 133-140.	2.3	27
203	Application of the Rapid Visco Analyser as a Rheological Tool for the Characterisation of Mash Viscosity as Affected by the Level of Barley Adjunct. Journal of the Institute of Brewing, 2005, 111, 165-175.	2.3	27
204	The Effect of Germination Time on the Final Malt Quality of Buckwheat. Journal of the American Society of Brewing Chemists, 2006, 64, 214-221.	1.1	27
205	Kilning Conditions for the Optimization of Enzyme Levels in Buckwheat. Journal of the American Society of Brewing Chemists, 2006, 64, 187-194.	1.1	27
206	Common wheat (Triticum aestivum L.): evaluating microstructural changes during the malting process by using confocal laser scanning microscopy and scanning electron microscopy. European Food Research and Technology, 2015, 241, 239-252.	3.3	27
207	Investigation into the Potential of <i>Lachancea fermentati </i> Brewing. Journal of the American Society of Brewing Chemists, 2019, 77, 157-169.	1.1	27
208	Isolation, characterisation and exploitation of lactic acid bacteria capable of efficient conversion of sugars to mannitol. International Journal of Food Microbiology, 2020, 321, 108546.	4.7	27
209	Characterization of a virulent Lactobacillus sake phage PWH2. Applied Microbiology and Biotechnology, 1993, 39, 617-621.	3.6	26
210	Mashing Studies with Unmalted Sorghum and Malted Barley. Journal of the Institute of Brewing, 2002, 108, 465-473.	2.3	26
211	Talaromyces emersonii Thermostable Enzyme Systems and Their Applications in Wheat Baking Systems. Journal of Agricultural and Food Chemistry, 2010, 58, 7415-7422.	5.2	26
212	Influence of the malting parameters on the haze formation of beer after filtration. European Food Research and Technology, 2011, 233, 587-597.	3.3	26
213	Enhancing the nutritional profile of regular wheat bread while maintaining technological quality and adequate sensory attributes. Food and Function, 2020, 11, 4732-4751.	4.6	26
214	Fundamental study on changes in the FODMAP profile of cereals, pseudo-cereals, and pulses during the malting process. Food Chemistry, 2021, 343, 128549.	8.2	26
215	Screening methods for the proteolytic breakdown of gluten by lactic acid bacteria and enzyme preparations. European Food Research and Technology, 1999, 209, 428-433.	3.3	25
216	Pilot Scale Production of a Lager Beer from a Grist Containing 50% Unmalted Sorghum. Journal of the Institute of Brewing, 2003, 109, 208-217.	2.3	25

#	Article	IF	Citations
217	Contribution of starter cultures to the proteolytic process of a fermented non-dried whole muscle ham product. International Journal of Food Microbiology, 2004, 93, 219-230.	4.7	25
218	Use of Response Surface Methodology to Investigate the Effectiveness of Commercial Enzymes on Buckwheat Malt for Brewing Purposes. Journal of the Institute of Brewing, 2006, 112, 324-332.	2.3	25
219	Isolation and characterisation of the antifungal activity of the cowpea defensin Cp-thionin II. Food Microbiology, 2019, 82, 504-514.	4.2	25
220	Leuconostoc citreum TR116 as a Microbial Cell Factory to Functionalise High-Protein Faba Bean Ingredients for Bakery Applications. Foods, 2020, 9, 1706.	4.3	25
221	Method for the rapid quantitative detection of lipolytic activity among food fermenting microorganisms. International Journal of Food Microbiology, 1997, 37, 237-240.	4.7	24
222	Pre-inoculation enrichment procedure enhances the performance of bacteriocinogenic Lactococcus lactis meat starter culture. International Journal of Food Microbiology, 2001, 64, 151-159.	4.7	24
223	Microstructure of Buckwheat and Barley During Malting Observed by Confocal Scanning Laser Microscopy and Scanning Electron Microscopy. Journal of the Institute of Brewing, 2007, 113, 34-41.	2.3	24
224	Quantification of cyclic dipeptides from cultures of Lactobacillus brevis R2Î" by HRGC/MS using stable isotope dilution assay. Analytical and Bioanalytical Chemistry, 2014, 406, 2433-2444.	3.7	24
225	Sour Brewing: Impact of <i>Lactobacillus Amylovorus </i> FST2.11 on Technological and Quality Attributes of Acid Beers. Journal of the American Society of Brewing Chemists, 2017, 75, 207-216.	1.1	24
226	Mashes to Mashes, Crust to Crust. Presenting a novel microstructural marker for malting in the archaeological record. PLoS ONE, 2020, 15, e0231696.	2.5	24
227	Extraction and characterisation of arabinoxylan from brewers spent grain and investigation of microbiome modulation potential. European Journal of Nutrition, 2021, 60, 4393-4411.	3.9	24
228	Fermentation as a Tool to Revitalise Brewers' Spent Grain and Elevate Techno-Functional Properties and Nutritional Value in High Fibre Bread. Foods, 2021, 10, 1639.	4.3	24
229	Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods, 2022, 11, 1307.	4.3	23
230	Textural and ultrastructural changes during processing and storage of lightly preserved salmon (Salmo salar) products. Journal of the Science of Food and Agriculture, 2000, 80, 1691-1697.	3.5	22
231	Influence of germination time and temperature on the properties of rye malt and rye malt based worts. Journal of Cereal Science, 2010, 52, 72-79.	3.7	22
232	Optimization of Malting Conditions for Two Black Rice Varieties, Black Non-Waxy Rice and Black Waxy Rice (Oryza sativa L. Indica). Journal of the Institute of Brewing, 2011, 117, 39-46.	2.3	22
233	The impact of Fusarium culmorum infection on the protein fractions of raw barley and malted grains. Applied Microbiology and Biotechnology, 2013, 97, 2053-2065.	3.6	22
234	Impact of different beer yeasts on wheat dough and bread quality parameters. Journal of Cereal Science, 2015, 63, 49-56.	3.7	22

#	Article	IF	CITATIONS
235	Antifungal activity of synthetic cowpea defensin Cp-thionin II and its application in dough. Food Microbiology, 2018, 73, 111-121.	4.2	22
236	Wheat flour quality evaluation from the baker's perspective: comparative assessment of 18 analytical methods. European Food Research and Technology, 2018, 244, 535-545.	3.3	22
237	Novel approaches for chemical and microbiological shelf life extension of cereal crops. Critical Reviews in Food Science and Nutrition, 2019, 59, 3395-3419.	10.3	22
238	Physicochemical and nutritional properties of high protein emulsionâ€type lupinâ€based model milk alternatives: effect of protein source and homogenization pressure. Journal of the Science of Food and Agriculture, 2022, 102, 5086-5097.	3.5	22
239	Proso millet (<i>Panicum miliaceum</i> L): An Evaluation of the Microstructural Changes in the Endosperm during the Malting Process by Using Scanning-Electron and Confocal Laser Microscopy. Journal of the Institute of Brewing, 2007, 113, 355-364.	2.3	21
240	Technological challenges and strategies for developing low-protein/protein-free cereal foods for specific dietary management. Food Research International, 2013, 54, 935-950.	6.2	21
241	The incorporation of sourdough in sugar-reduced biscuits: a promising strategy to improve techno-functional and sensory properties. European Food Research and Technology, 2019, 245, 1841-1854.	3.3	21
242	Low FODMAPs and gluten-free foods for irritable bowel syndrome treatment: Lights and shadows. Food Research International, 2018, 110, 33-41.	6.2	20
243	â€`Low-Salt' Bread as an Important Component of a Pragmatic Reduced-Salt Diet for Lowering Blood Pressure in Adults with Elevated Blood Pressure. Nutrients, 2019, 11, 1725.	4.1	20
244	Resistant starchâ€"An accessible fiber ingredient acceptable to the Western palate. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2930-2955.	11.7	20
245	The Influence of Lactic Acid Bacteria on the Quality of Malt. Journal of the Institute of Brewing, 2005, 111, 42-50.	2.3	19
246	Control of <i>Zymoseptoria tritici</i> cause of septoria tritici blotch of wheat using antifungal <i>Lactobacillus</i> strains. Journal of Applied Microbiology, 2016, 121, 485-494.	3.1	19
247	Screening of post-harvest decontamination methods for cereal grains and their impact on grain quality and technological performance. European Food Research and Technology, 2019, 245, 1061-1074.	3.3	19
248	Nutritional and Rheological Features of Lentil Protein Isolate for Yoghurt-Like Application. Foods, 2021, 10, 1692.	4.3	19
249	Reduced nitrite levels and dietary î±-tocopheryl acetate supplementation: effects on the colour and oxidative stability of cooked hams. Meat Science, 2000, 55, 475-482.	5 . 5	18
250	Biological Acidification of a Mash Containing 20% Barley Using <i>Lactobacillus Amylovorus</i> FST 1.1: Its Effects on Wort and Beer Quality. Journal of the American Society of Brewing Chemists, 2005, 63, 96-106.	1.1	18
251	Impact of Various Levels of Unmalted Oats (<i>Avena Sativa</i> L.) on the Quality and Processability of Mashes, Worts, and Beers. Journal of the American Society of Brewing Chemists, 2012, 70, 142-149.	1.1	18
252	Impact of <i>Fusarium Culmorum-</i> Infected Barley Malt Grains on Brewing and Beer Quality. Journal of the American Society of Brewing Chemists, 2012, 70, 186-194.	1.1	18

#	Article	IF	Citations
253	On the suitability of alternative cereals, pseudocereals and pulses in the production of alcohol-reduced beers by non-conventional yeasts. European Food Research and Technology, 2019, 245, 2549-2564.	3.3	18
254	Rootlets, a Malting By-Product with Great Potential. Fermentation, 2020, 6, 117.	3.0	18
255	Changes in the Protein Profile of Oats and Barley during Brewing and Fermentation. Journal of the American Society of Brewing Chemists, 2010, 68, 119-124.	1.1	17
256	Barley. , 2013, , 155-201e.		17
257	Localisation and development of proteolytic activities in quinoa (Chenopodium quinoa) seeds during germination and early seedling growth. Journal of Cereal Science, 2014, 60, 484-489.	3.7	17
258	Amylolytic activities and starch reserve mobilization during the germination of quinoa. European Food Research and Technology, 2014, 239, 621-627.	3.3	17
259	Enzymatic degradation of FODMAPS via application of \hat{l}^2 -fructofuranosidases and \hat{l}_2 -galactosidases- A fundamental study. Journal of Cereal Science, 2020, 95, 102993.	3.7	17
260	Sensory evaluation of lightly preserved salmon using freeâ€choice profiling. International Journal of Food Science and Technology, 1999, 34, 115-123.	2.7	16
261	Characterisation of a Talaromyces emersonii thermostable enzyme cocktail with applications in wheat dough rheology. Enzyme and Microbial Technology, 2011, 49, 229-236.	3.2	16
262	Gluten-free Pastaâ€"Advances in Research and Commercialization. Cereal Foods World, 2012, 57, 225-229.	0.2	16
263	Protein Modifications and Metabolic Changes Taking Place during the Malting of Common Wheat (<i>Triticum Aestivum</i> L.). Journal of the American Society of Brewing Chemists, 2013, 71, 153-160.	1.1	16
264	Effect of salt reduction on wheat-dough properties and quality characteristics of puff pastry with full and reduced fat content. Food Research International, 2016, 89, 330-337.	6.2	16
265	Rejuvenated Brewer's Spent Grain: EverVita Ingredients as Game-Changers in Fibre-Enriched Bread. Foods, 2021, 10, 1162.	4.3	16
266	Physicochemical Properties of Oat Varieties and Their Potential for Breadmaking. Cereal Chemistry, 2011, 88, 602-608.	2.2	15
267	Understanding the function of sugar in burger buns: a fundamental study. European Food Research and Technology, 2017, 243, 1905-1915.	3.3	15
268	Inhibitory effect of four novel synthetic peptides on food spoilage yeasts. International Journal of Food Microbiology, 2019, 300, 43-52.	4.7	15
269	A comparative study of gluten-free sprouts in the gluten-free bread-making process. European Food Research and Technology, 2019, 245, 617-629.	3.3	15
270	Antifungal activity of a de novo synthetic peptide and derivatives against fungal food contaminants. Journal of Peptide Science, 2019, 25, e3137.	1.4	15

#	Article	IF	CITATIONS
271	Anti-yeast activity and characterisation of synthetic radish peptides Rs-AFP1 and Rs-AFP2 against food spoilage yeast. Food Control, 2020, 113, 107178.	5 . 5	15
272	A modified agar medium for the screening of proteolytic activity of starter cultures for meat fermentation purposes. International Journal of Food Microbiology, 1997, 36, 235-239.	4.7	14
273	Control of food spoiling bacteria in cooked meat products with nisin, lacticin 3147, and a lacticin 3147-producing starter culture. European Food Research and Technology, 2004, 219, 6-13.	3.3	14
274	Development of a New Rheological Laboratory Method for Mash Systems—Its Application in the Characterization of Grain Modification Levels. Journal of the American Society of Brewing Chemists, 2005, 63, 76-86.	1.1	14
275	Studies on the Influence of Germination Conditions on Protein Breakdown in Buckwheat and Oats. Journal of the Institute of Brewing, 2010, 116, 3-13.	2.3	14
276	Correlation of Flavor Profile to Sensory Analysis of Bread Produced with Different <i>Saccharomyces cerevisiae</i> Originating from the Baking and Beverage Industry. Cereal Chemistry, 2017, 94, 746-751.	2.2	14
277	Investigation of different dietary-fibre-ingredients for the design of a fibre enriched bread formulation low in FODMAPs based on wheat starch and vital gluten. European Food Research and Technology, 2021, 247, 1939-1957.	3.3	14
278	Fundamental study of the application of brewers spent grain and fermented brewers spent grain on the quality of pasta. Food Structure, 2021, 30, 100225.	4.5	14
279	FODMAP modulation as a dietary therapy for IBS: Scientific and market perspective. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1491-1516.	11.7	14
280	Fermentation of salmon fillets with a variety of lactic acid bacteria. Food Research International, 1997, 30, 777-785.	6.2	13
281	Effect of Dietary Supplementation with \hat{l} ±-Tocopheryl Acetate on the Stability of Reformed and Restructured Low Nitrite Cured Turkey Products. Meat Science, 1998, 50, 191-201.	5.5	13
282	Effect of glutamine peptide on baking characteristics of bread using experimental design. European Food Research and Technology, 2001, 212, 192-197.	3.3	13
283	Wheat and other Triticum grains. , 2013, , 1-67e.		13
284	Fundamental study on the impact of silica gel and tannic acid on hordein levels in beer. Innovative Food Science and Emerging Technologies, 2015, 31, 177-184.	5.6	13
285	Physical and flow properties of pseudocereal-based protein-rich ingredient powders. Journal of Food Engineering, 2020, 281, 109973.	5. 2	13
286	Application of mannitol producing Leuconostoc citreum TR116 to reduce sugar content of barley, oat and wheat malt-based worts. Food Microbiology, 2020, 90, 103464.	4.2	13
287	Evaluation of a Two-Step Baking Procedure for Convenience Sponge Cakes. Cereal Chemistry, 1999, 76, 303-307.	2.2	12
288	Effects of environmental conditions on microbial proteolysis in a pork myofibril model system. Journal of Applied Microbiology, 1999, 87, 794-803.	3.1	12

#	Article	IF	Citations
289	Functionality of microencapsulated high-fat powders in wheat bread. European Food Research and Technology, 2000, 212, 64-69.	3.3	12
290	Model Studies to Understand the Effects of Amylase Additions and pH Adjustment on the Rheological Behaviour of Simulated Brewery Mashes. Journal of the Institute of Brewing, 2005, 111, 153-164.	2.3	12
291	Malting and brewing with gluten-free cereals. , 2008, , 347-372.		12
292	The effects of liquid versus spray-dried Laminaria digitata extract on selected bacterial groups in the piglet gastrointestinal tract (GIT) microbiota. Anaerobe, 2013, 21, 1-8.	2.1	12
293	A comparative study of oat (Avena sativa) cultivars as brewing adjuncts. European Food Research and Technology, 2013, 236, 1015-1025.	3.3	12
294	Oats., 2013,, 243-283e.		12
295	Brewing with up to 40% unmalted oats (Avena sativa) and sorghum (Sorghum bicolor): a review. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	2.3	12
296	Implementation of commercial oat and sorghum flours in brewing. European Food Research and Technology, 2014, 238, 515-525.	3.3	12
297	Sourdough technology as a novel approach to overcome quality losses in sugar-reduced cakes. Food and Function, 2019, 10, 4985-4997.	4.6	12
298	Evaluation of a new method to determine the water addition level in gluten-free bread systems. Journal of Cereal Science, 2020, 93, 102971.	3.7	12
299	Isolation, characterisation and application of a new antifungal protein from broccoli seeds – New food preservative with great potential. Food Control, 2020, 117, 107356.	5.5	12
300	Microencapsulated high-fat powders in biscuit production. European Food Research and Technology, 1999, 208, 388-393.	0.6	11
301	Effects of Microencapsulated High-Fat Powders on the Empirical and Fundamental Rheological Properties of Wheat Flour Doughs. Cereal Chemistry, 2000, 77, 111-114.	2.2	11
302	Impact of low-trans fat compositions on the quality of conventional and fat-reduced puff pastry. Journal of Food Science and Technology, 2016, 53, 2117-2126.	2.8	11
303	Impact of buffering capacity on the acidification of wort by brewing-relevant lactic acid bacteria. Journal of the Institute of Brewing, 2017, 123, 497-505.	2.3	11
304	Characteristics and properties of fibres suitable for a low FODMAP diet- an overview. Trends in Food Science and Technology, 2021, 112, 823-836.	15.1	11
305	Determination of 42 mycotoxins in oats using a mechanically assisted QuEChERS sample preparation and UHPLC-MS/MS detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122187.	2.3	11
306	Effect of unmalted oats (Avena sativa L.) on the quality of high-gravity mashes and worts without or with exogenous enzyme addition. European Food Research and Technology, 2014, 238, 225-235.	3.3	10

#	Article	IF	CITATIONS
307	Growth Study, Metabolite Development, and Organoleptic Profile of a Malt-Based Substrate Fermented by Lactic Acid Bacteria. Journal of the American Society of Brewing Chemists, 2015, 73, 303-313.	1.1	10
308	Comparative Study of the Contribution of Hop (<i>Humulus Lupulus</i> L.) Hard Resins Extracted from Different Hop Varieties to Beer Quality Parameters. Journal of the American Society of Brewing Chemists, 2015, 73, 115-123.	1.1	10
309	Thermal and Mineral Sensitivity of Oil-in-Water Emulsions Stabilised using Lentil Proteins. Foods, 2020, 9, 453.	4.3	10
310	Formulation, pilotâ€scale preparation, physicochemical characterization and digestibility of a lentil proteinâ€based model infant formula powder. Journal of the Science of Food and Agriculture, 2022, 102, 5044-5054.	3.5	10
311	Combining highâ€protein ingredients from pseudocereals and legumes for the development of fresh highâ€protein hybrid pasta: enhanced nutritional profile. Journal of the Science of Food and Agriculture, 2022, 102, 5000-5010.	3.5	10
312	Defined Starter Cultures used for Fermentation of Salmon Fillets. Journal of Food Science, 1997, 62, 1214-1218.	3.1	9
313	A Comparison of White Nigerian and Red Italian Sorghum (Sorghum Bicolor) as Brewing Adjuncts Based on Optimized Enzyme Additions. Journal of the American Society of Brewing Chemists, 2013, 71, 248-257.	1.1	9
314	Antifungal activity of a synthetic human \hat{l}^2 -defensin 3 and potential applications in cereal-based products. Innovative Food Science and Emerging Technologies, 2016, 38, 160-168.	5.6	9
315	Sodium Chloride and Its Influence on the Aroma Profile of Yeasted Bread. Foods, 2017, 6, 66.	4.3	9
316	Study on the Inhibitory Activity of a Synthetic Defensin Derived from Barley Endosperm against Common Food Spoilage Yeast. Molecules, 2021, 26, 165.	3.8	9
317	Effect of dietary alpha-tocopheryl acetate supplementation on the shelf-life stability of reduced nitrite cooked ham products. International Journal of Food Science and Technology, 2001, 36, 631-639.	2.7	8
318	Investigation of the Malting Behavior of Oats for Brewing Purposes. Journal of the American Society of Brewing Chemists, 2009, 67, 235-241.	1.1	8
319	Part I. The Use of <i>Lactobacillus Plantarum </i> Starter Cultures to Inhibit Rootlet Growth during Germination of Barley, Reducing Malting Loss, and its Influence on Malt Quality. Journal of the American Society of Brewing Chemists, 2011, 69, 227-238.	1.1	8
320	Buckwheat. , 2013, , 369-408.		8
321	A comprehensive investigation into sample extraction and method validation for the identification of antifungal compounds produced by lactic acid bacteria using HPLC-UV/DAD. Analytical Methods, 2014, 6, 5331.	2.7	8
322	Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology. Foods, 2017, 6, 15.	4.3	8
323	Cereal-based gluten-free functional drinks. , 2008, , 373-392.		7
324	Impact of different S. cerevisiae yeast strains on gluten-free dough and bread quality parameters. European Food Research and Technology, 2019, 245, 213-223.	3.3	7

#	Article	IF	CITATIONS
325	Combining highâ€protein ingredients from pseudocereals and legumes for the development of fresh highâ€protein hybrid pasta: maintained technological quality and adequate sensory attributes. Journal of the Science of Food and Agriculture, 2020, , .	3.5	7
326	Mouthfeel of Beer: Development of Tribology Method and Correlation with Sensory Data from an Online Database. Journal of the American Society of Brewing Chemists, 2022, 80, 112-127.	1.1	7
327	Lentil-Based Yogurt Alternatives Fermented with Multifunctional Strains of Lactic Acid Bacteria—Techno-Functional, Microbiological, and Sensory Characteristics. Foods, 2022, 11, 2013.	4.3	7
328	Isolation and Characterization of Bacteriophages That Inhibit Strains of Pediococcus Damnosus, Lactobacillus Brevis, and Lactobacillus paraplantarum That Cause Beer Spoilage. Journal of the American Society of Brewing Chemists, 2011, 69, 8-12.	1.1	6
329	Impact of †oxidizing†mand †reducing†buckwheat sourdoughs on brown rice and buckwheat batter and bread. European Food Research and Technology, 2014, 238, 979-988.	3.3	6
330	Fundamental Study on the Impact of Transglutaminase on Hordein Levels in Beer. Journal of the American Society of Brewing Chemists, 2015, 73, 253-260.	1.1	6
331	Lactobacillus brevis R2Î" as starter culture to improve biological and technological qualities of barley malt. European Food Research and Technology, 2017, 243, 1363-1374.	3.3	6
332	Application of sourdough in the production of fat- and salt-reduced puff pastry. European Food Research and Technology, 2018, 244, 1581-1593.	3.3	6
333	Comparative study of sugar extraction procedures for HPLC analysis and proposal of an ethanolic extraction method for plantâ€based highâ€protein ingredients. Journal of the Science of Food and Agriculture, 2021, , .	3.5	6
334	Formation and thermal and colloidal stability of <scp>oilâ€inâ€water</scp> emulsions stabilized using quinoa and lentil protein blends. Journal of the Science of Food and Agriculture, 2022, 102, 5077-5085.	3.5	6
335	Model Studies Characterizing the Rheological Behavior of Simulated Mashing Conditions Using the Rapid Visco-Analyzer. Journal of the American Society of Brewing Chemists, 2006, 64, 100-110.	1.1	5
336	New product development: the case of gluten-free food products. , 2008, , 413-431.		5
337	Protein Changes during Malting of Buckwheat. Journal of the American Society of Brewing Chemists, 2008, 66, 127-135.	1.1	5
338	Statistical comparison of a new rheological method for defining changes in mash consistency during mashing with the established Rapid Visco Analyser. Journal of Cereal Science, 2013, 57, 39-46.	3.7	5
339	Theoretical Study on a Statistical Method for the Simple and Reliable Pre-Selection of Wheat Malt Types for Brewing Purposes Based on Generally Accepted Quality Characteristics. Journal of the American Society of Brewing Chemists, 2013, 71, 67-75.	1.1	5
340	Impact of Unmalted White Nigerian and Red Italian Sorghum (Sorghum Bicolor) on the Quality of Worts and Beers Applying Optimized Enzyme Levels. Journal of the American Society of Brewing Chemists, 2013, 71, 258-266.	1.1	5
341	Pilot scale investigation of the relationship between baked good properties and wheat flour analytical values. European Food Research and Technology, 2018, 244, 481-490.	3.3	5
342	Plant compounds for the potential reduction of food waste $\hat{a}\in$ a focus on antimicrobial peptides. Critical Reviews in Food Science and Nutrition, 2022, 62, 4242-4265.	10.3	5

#	Article	IF	Citations
343	Isolation of the mustard Napin protein Allergen Sin a 1 and characterisation of its antifungal activity. Biochemistry and Biophysics Reports, 2022, 29, 101208.	1.3	5
344	Optimisation of fermentation conditions for the production of a novel cooked fermented ham product. European Food Research and Technology, 2002, 215, 183-188.	3.3	4
345	The Influence of Starter Cultures on Barley Contaminated with <i>Fusarium Culmorum </i> Thw 4.0754. Journal of the American Society of Brewing Chemists, 2006, 64, 158-165.	1.1	4
346	Modulation of in vitro predicted glycaemic index of white wheat bread by different strains of Saccharomyces cerevisiae originating from various beverage applications. European Food Research and Technology, 2017, 243, 1877-1886.	3.3	4
347	Impact of post-harvest degradation of wheat gluten proteins by Fusarium culmorum on the resulting bread quality. European Food Research and Technology, 2017, 243, 1609-1618.	3.3	4
348	Reduction of Hordein Content in Beer by Applying Prolyl Endoprotease to the Malting Process. Journal of the American Society of Brewing Chemists, 2017, 75, 262-268.	1.1	4
349	<i>Lachancea fermentati</i> FST 5.1: an alternative to baker's yeast to produce low FODMAP whole wheat bread. Food and Function, 2021, 12, 11262-11277.	4.6	4
350	Comparison of Protein Degradation as a Consequence of Germination Time and Temperature in Rye and Barley Malts. Journal of the American Society of Brewing Chemists, 2010, 68, 195-203.	1.1	3
351	Impact of Proso Millet (Panicum MiliaceumL.) Varieties on Malting Quality. Journal of the American Society of Brewing Chemists, 2010, 68, 152-159.	1.1	3
352	Part II. The Use of Malt Produced with 70% Less Malting Loss for Beer Production: Impact on Processability and Final Quality. Journal of the American Society of Brewing Chemists, 2011, 69, 239-254.	1.1	3
353	A study on malt modification, used as a tool to reduce levels of beer hordeins. Journal of the Institute of Brewing, 2018, 124, 143-147.	2.3	3
354	Sourdough and Gluten-Free Products. , 2013, , 245-264.		2
355	Teff. , 2013, , 351-369e.		2
356	A fundamental study on the relationship between barley cultivar and hordeins in single cultivar beers. Journal of the Institute of Brewing, 2016, 122, 243-250.	2.3	2
357	Sorghum., 2013,, 283-311.		1
358	Soft Tribology Using Rheometers: A Practical Guide and Introduction. Journal of the American Society of Brewing Chemists, 2021, 79, 213-230.	1.1	1
359	Molecular genetics of bacteriophages of lactic acid bacteria. Dairy Science and Technology, 1993, 73, 191-198.	0.9	1
360	A Comparison of White Nigerian and Red Italian Sorghum (Sorghum bicolor) as Brewing Adjuncts Based on Optimized Enzyme Additions. Journal of the American Society of Brewing Chemists, 2013, , .	1.1	1

#	ARTICLE	IF	CITATIONS
361	NOVEL APPROACHES IN THE DESIGN OF GLUTEN-FREE CEREAL PRODUCTS. , 2009, , 89-97.		1
362	Inhibitory activity of two synthetic Pharabitis nil L. antimicrobial peptides against common spoilage yeasts. Applied Food Research, 2022, , 100168.	4.0	1
363	Introduction to the 4th International Symposium on Gluten-Free Cereal Products and Beverages. Food Research International, 2018, 110, 1-2.	6.2	0