
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1635831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?. Trends in Plant Science, 2003, 8, 263-271.	8.8	448
2	Overexpression of Arabidopsis <i>ECERIFERUM1</i> Promotes Wax Very-Long-Chain Alkane Biosynthesis and Influences Plant Response to Biotic and Abiotic Stresses Â. Plant Physiology, 2011, 156, 29-45.	4.8	414
3	The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. Plant Cell, 2006, 18, 3289-3302.	6.6	391
4	A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2008, 20, 752-767.	6.6	343
5	HLM1, an Essential Signaling Component in the Hypersensitive Response, Is a Member of the Cyclic Nucleotide–Gated Channel Ion Channel Family[W]. Plant Cell, 2003, 15, 365-379.	6.6	329
6	A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10179-10184.	7.1	271
7	Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry, 2001, 57, 1187-1195.	2.9	246
8	Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics, 2014, 15, 336.	2.8	241
9	Cinnamyl alcohol dehydrogenases and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology, 2010, 11, 83-92.	4.2	229
10	Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant Journal, 1996, 9, 101-124.	5.7	208
11	hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant Journal, 1994, 5, 507-521.	5.7	202
12	Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Molecular Biology, 1999, 39, 1243-1255.	3.9	198
13	Nitric Oxide Participates in the Complex Interplay of Defense-Related Signaling Pathways Controlling Disease Resistance to <i>Sclerotinia sclerotiorum</i> in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2010, 23, 846-860.	2.6	186
14	Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochemical and Biophysical Research Communications, 1987, 143, 885-892.	2.1	159
15	Activation of hsr203, a Plant Gene Expressed During Incompatible Plant-Pathogen Interactions, Is Correlated with Programmed Cell Death. Molecular Plant-Microbe Interactions, 1998, 11, 544-554.	2.6	145
16	The <i>Arabidopsis</i> Patatin-Like Protein 2 (PLP2) Plays an Essential Role in Cell Death Execution and Differentially Affects Biosynthesis of Oxylipins and Resistance to Pathogens. Molecular Plant-Microbe Interactions, 2009, 22, 469-481.	2.6	141
17	Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. Nature Communications, 2013, 4, 1476.	12.8	138
18	Resistance to phytopathogens <i>e tutti quanti</i> : placing plant quantitative disease resistance on the map. Molecular Plant Pathology, 2014, 15, 427-432.	4.2	135

#	Article	IF	CITATIONS
19	An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letters, 2006, 580, 3498-3504.	2.8	134
20	VASCULAR ASSOCIATED DEATH1, a Novel GRAM Domain–Containing Protein, Is a Regulator of Cell Death and Defense Responses in Vascular Tissues. Plant Cell, 2004, 16, 2217-2232.	6.6	129
21	Cell Surfaces in Plant-Microorganism Interactions. Plant Physiology, 1985, 77, 700-704.	4.8	123
22	An Atypical Kinase under Balancing Selection Confers Broad-Spectrum Disease Resistance in Arabidopsis. PLoS Genetics, 2013, 9, e1003766.	3.5	117
23	The <i>Xanthomonas</i> Type III Effector XopD Targets the <i>Arabidopsis</i> Transcription Factor MYB30 to Suppress Plant Defense. Plant Cell, 2011, 23, 3498-3511.	6.6	109
24	Ethylene Is One of the Key Elements for Cell Death and Defense Response Control in the Arabidopsis Lesion Mimic Mutant <i>vad1</i> Â. Plant Physiology, 2007, 145, 465-477.	4.8	108
25	Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in <i><scp>A</scp>rabidopsis thaliana</i> . Molecular Ecology, 2013, 22, 4222-4240.	3.9	101
26	Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signaling and Behavior, 2009, 4, 94-99.	2.4	98
27	A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death. Plant Journal, 1999, 20, 57-66.	5.7	90
28	Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nature Ecology and Evolution, 2017, 1, 1551-1561.	7.8	89
29	The <i>Arabidopsis thaliana</i> lectin receptor kinase LecRKâ€I.9 is required for full resistance to <i>Pseudomonas syringae</i> and affects jasmonate signalling. Molecular Plant Pathology, 2017, 18, 937-948.	4.2	88
30	AvrAC _{Xcc8004} , a Type III Effector with a Leucine-Rich Repeat Domain from <i>Xanthomonas campestris</i> Pathovar campestris Confers Avirulence in Vascular Tissues of <i>Arabidopsis thaliana</i> Ecotype Col-0. Journal of Bacteriology, 2008, 190, 343-355.	2.2	84
31	<i>At</i> sPLA ₂ -α nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15281-15286.	7.1	84
32	Identification of new early markers of the hypersensitive response inArabidopsis thaliana. FEBS Letters, 1999, 459, 149-153.	2.8	81
33	Advances on plant–pathogen interactions from molecular toward systems biology perspectives. Plant Journal, 2017, 90, 720-737.	5.7	81
34	Imbalanced Lignin Biosynthesis Promotes the Sexual Reproduction of Homothallic Oomycete Pathogens. PLoS Pathogens, 2009, 5, e1000264.	4.7	80
35	Cell Surfaces in Plant-Microorganism Interactions. Plant Physiology, 1986, 81, 228-233.	4.8	78
36	Cell Surfaces in Plant-Microorganism Interactions. Plant Physiology, 1982, 70, 82-86.	4.8	77

#	Article	IF	CITATIONS
37	In situ relationships between microbiota and potential pathobiota in <i>Arabidopsis thaliana</i> . ISME Journal, 2018, 12, 2024-2038.	9.8	73
38	Molecular cloning of a sulfotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bacteria. Plant Molecular Biology, 1996, 30, 995-1008.	3.9	68
39	The combined action of 9 lipoxygenase and galactolipase is sufficient to bring about programmed cell death during tobacco hypersensitive response. Plant, Cell and Environment, 2005, 28, 1367-1378.	5.7	68
40	Identification of a novel pathogen-responsive element in the promoter of the tobacco gene HSR203J, a molecular marker of the hypersensitive response. Plant Journal, 2001, 26, 495-507.	5.7	66
41	Optimization of pathogenicity assays to study the <i>Arabidopsis thaliana</i> – <i>Xanthomonas campestris</i> pv. <i>campestris</i> pathosystem. Molecular Plant Pathology, 2005, 6, 327-333.	4.2	66
42	A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale. Frontiers in Plant Science, 2018, 9, 967.	3.6	65
43	HSR203 antisense suppression in tobacco accelerates development of hypersensitive cell death. Plant Journal, 2001, 27, 115-127.	5.7	60
44	Lipoxygenase-mediated production of fatty acid hydroperoxides is a specific signature of the hypersensitive reaction in plants. Plant Physiology and Biochemistry, 2002, 40, 633-639.	5.8	56
45	Regulation of a Chitinase Gene Promoter by Ethylene and Elicitors in Bean Protoplasts. Plant Physiology, 1991, 97, 433-439.	4.8	53
46	Quantitative disease resistance to the bacterial pathogen <scp><i>X</i></scp> <i>anthomonas campestris</i> involves an <scp>A</scp> rabidopsis immune receptor pair and a gene of unknown function. Molecular Plant Pathology, 2016, 17, 510-520.	4.2	53
47	Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5440-E5449.	7.1	52
48	The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response. PLoS ONE, 2014, 9, e99343.	2.5	52
49	Cell surfaces in plant micro-organism interactions. VIII. Increased proteinase inhibitor activity in melon plants in response to infection by Colletotrichum lagenarium or to treatment with an elicitor fraction from this fungus. Physiological and Molecular Plant Pathology, 1987, 30, 453-460.	2.5	51
50	Systemic induction of chitinase activity and resistance in melon plants upon fungal infection or elicitor treatment. Physiological and Molecular Plant Pathology, 1988, 33, 409-417.	2.5	51
51	Functional Expression of a Tobacco Gene Related to the Serine Hydrolase Family. Esterase Activity Towards Short-Chain Dinitrophenyl Acylesters. FEBS Journal, 1997, 248, 700-706.	0.2	48
52	Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance. PLoS Genetics, 2017, 13, e1007143.	3.5	38
53	Network organization of the plant immune system: from pathogen perception to robust defense induction. Plant Journal, 2022, 109, 447-470.	5.7	38
54	Comparison of the expression patterns of two small gene families of S gene family receptor kinase genes during the defence response in Brassica oleracea and Arabidopsis thaliana. Gene, 2002, 282, 215-225.	2.2	37

#	Article	IF	CITATIONS
55	Robustness of plant quantitative disease resistance is provided by a decentralized immune network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18099-18109.	7.1	34
56	Gene expression in Nicotiana tabacum in response to compatible and incompatible isolates of Pseudomonas solanacearum. Physiological and Molecular Plant Pathology, 1989, 35, 23-33.	2.5	33
57	Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana. PLoS ONE, 2006, 1, e123.	2.5	33
58	Expression polymorphism at the <i><scp>ARPC</scp>4</i> locus links the actin cytoskeleton with quantitative disease resistance to <i>Sclerotinia sclerotiorum</i> in <i>Arabidopsis thaliana</i> . New Phytologist, 2019, 222, 480-496.	7.3	30
59	Induction of chitinases and of translatable mRNA for these enzymes in melon plants infected with Collectotrichum lagenarium. Plant Science, 1987, 52, 175-185.	3.6	29
60	Rapid Induction by Wounding and Bacterial Infection of an S Gene Family Receptor-Like Kinase Gene in Brassica oleracea. Plant Cell, 1997, 9, 49.	6.6	28
61	Activité chitinasique de plantes de melon infectées par Colletotrichum lagenarium ou traitées par l'éthylène. Agronomy for Sustainable Development, 1982, 2, 829-834.	0.8	27
62	Activation of a Bean Chitinase Promoter in Transgenic Tobacco Plants by Phytopathogenic Fungi. Plant Cell, 1990, 2, 999.	6.6	25
63	An essential role for the VASt domain of the Arabidopsis VAD1 protein in the regulation of defense and cell death in response to pathogens. PLoS ONE, 2017, 12, e0179782.	2.5	23
64	Purification and some properties of chitinases from melon plants infected by Colletotrichum lagenarium. Carbohydrate Research, 1987, 165, 93-104.	2.3	22
65	<scp>ZRK</scp> atypical kinases: emerging signaling components of plant immunity. New Phytologist, 2014, 203, 713-716.	7.3	22
66	Plant biotic interactions: from conflict to collaboration. Plant Journal, 2018, 93, 589-591.	5.7	22
67	Developmental and pathogen-induced activation of an msr gene, str246C, from tobacco involves multiple regulatory elements. Molecular Genetics and Genomics, 1995, 247, 323-337.	2.4	21
68	Ribulose-1,5-bisphosphate carboxylase/oxygenase expression in melon plants infected with Colletotrichum lagenarium. Planta, 1987, 170, 386-391.	3.2	16
69	hxc2, an Arabidopsis mutant with an altered hypersensitive response to Xanthomonas campestris pv. campestris. Plant Journal, 2000, 24, 749-761.	5.7	14
70	The Genomic Architecture of Competitive Response of Arabidopsis thaliana Is Highly Flexible Among Plurispecific Neighborhoods. Frontiers in Plant Science, 2021, 12, 741122.	3.6	13
71	Structural organization of str 246C and str 246N, plant defense-related genes from Nicotiana tabacum. Plant Molecular Biology, 1994, 26, 515-521.	3.9	12
72	Pathogen-Induced Elicitin Production in Transgenic Tobacco Generates a Hypersensitive Response and Nonspecific Disease Resistance. Plant Cell, 1999, 11, 223.	6.6	10

#	Article	IF	CITATIONS
73	Identification of the protein sequence of the type III effector XopD from the B100 strain of Xanthomonas campestrispvcampestris. Plant Signaling and Behavior, 2012, 7, 184-187.	2.4	8
74	Ribulose 1,5-bisphosphate carboxylase/oxygenase gene expression in melon plants infected with Colletotrichum lagenarium. Activity level and rate of synthesis of mRNAs coding for the large and small subunits. Physiological and Molecular Plant Pathology, 1988, 32, 411-424.	2.5	7
75	An Arabidopsis mutant with altered hypersensitive response to Xanthomonas campestris pv. campestris, hxc1, displays a complex pathophenotype. Molecular Plant Pathology, 2004, 5, 453-464.	4.2	7
76	Expression of the Arabidopsis transcription factor AtMYB30 is post-transcriptionally regulated. Plant Physiology and Biochemistry, 2010, 48, 735-739.	5.8	7
77	Ribulose 1,5-biphosphate carboxylase-oxygenase small subunit transcripts as a susceptibility reflecting molecular marker in sunflower infected with Sclerotinia sclerotiorum. Plant Science, 1988, 56, 219-225.	3.6	4
78	PERKing up our understanding of the prolineâ€rich extensinâ€like receptor kinases, a forgotten plant receptor kinase family. New Phytologist, 2022, 235, 875-884.	7.3	3