Lu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634899/publications.pdf

Version: 2024-02-01

257450 434195 3,642 31 24 31 h-index citations g-index papers 34 34 34 5040 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nature Communications, 2022, 13, 2264.	12.8	49
2	A Colorâ€Shifting Nearâ€Infrared Fluorescent Aptamer–Fluorophore Module for Liveâ€Cell RNA Imaging. Angewandte Chemie, 2021, 133, 21611-21618.	2.0	4
3	A Colorâ€Shifting Nearâ€Infrared Fluorescent Aptamer–Fluorophore Module for Live ell RNA Imaging. Angewandte Chemie - International Edition, 2021, 60, 21441-21448.	13.8	19
4	Systematic Tuning of Rhodamine Spirocyclization for Super-resolution Microscopy. Journal of the American Chemical Society, 2021, 143, 14592-14600.	13.7	77
5	A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nature Chemistry, 2020, 12, 165-172.	13.6	240
6	Environmentally Sensitive Colorâ€Shifting Fluorophores for Bioimaging. Angewandte Chemie - International Edition, 2020, 59, 21880-21884.	13.8	49
7	Environmentally Sensitive Colorâ€Shifting Fluorophores for Bioimaging. Angewandte Chemie, 2020, 132, 22064-22068.	2.0	18
8	Engineering a highly selective probe for ratiometric imaging of H ₂ S _n and revealing its signaling pathway in fatty liver disease. Chemical Science, 2020, 11, 7991-7999.	7.4	27
9	Engineering a Reversible Fluorescent Probe for Real-Time Live-Cell Imaging and Quantification of Mitochondrial ATP. Analytical Chemistry, 2020, 92, 4681-4688.	6.5	63
10	A Near-Infrared Probe Tracks and Treats Lung Tumor Initiating Cells by Targeting HMOX2. Journal of the American Chemical Society, 2019, 141, 14673-14686.	13.7	35
11	Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. Journal of the American Chemical Society, 2019, 141, 2770-2781.	13.7	357
12	Selective Visualization of the Endogenous Peroxynitrite in an Inflamed Mouse Model by a Mitochondria-Targetable Two-Photon Ratiometric Fluorescent Probe. Journal of the American Chemical Society, 2017, 139, 285-292.	13.7	407
13	Realâ€Time Inâ€Vivo Hepatotoxicity Monitoring through Chromophoreâ€Conjugated Photonâ€Upconverting Nanoprobes. Angewandte Chemie, 2017, 129, 4229-4233.	2.0	19
14	A new approach for turn-on fluorescence sensing of l-DOPA. Chemical Communications, 2017, 53, 12465-12468.	4.1	21
15	Motion-induced change in emission (MICE) for developing fluorescent probes. Chemical Society Reviews, 2017, 46, 4833-4844.	38.1	172
16	Sensors: Development of a Highly Selective, Sensitive, and Fast Response Upconversion Luminescent Platform for Hydrogen Sulfide Detection (Adv. Funct. Mater. 2/2016). Advanced Functional Materials, 2016, 26, 311-311.	14.9	3
17	Selective imaging and cancer cell death via pH switchable near-infrared fluorescence and photothermal effects. Chemical Science, 2016, 7, 5995-6005.	7.4	94
18	Boronic Acid: A Bio-Inspired Strategy To Increase the Sensitivity and Selectivity of Fluorescent NADH Probe. Journal of the American Chemical Society, 2016, 138, 10394-10397.	13.7	74

#	Article	IF	CITATION
19	Development of a Highly Selective, Sensitive, and Fast Response Upconversion Luminescent Platform for Hydrogen Sulfide Detection. Advanced Functional Materials, 2016, 26, 191-199.	14.9	79
20	A Multisiteâ€Binding Switchable Fluorescent Probe for Monitoring Mitochondrial ATP Level Fluctuation in Live Cells. Angewandte Chemie - International Edition, 2016, 55, 1773-1776.	13.8	158
21	High-Efficiency in Vitro and in Vivo Detection of Zn ²⁺ by Dye-Assembled Upconversion Nanoparticles. Journal of the American Chemical Society, 2015, 137, 2336-2342.	13.7	233
22	Development of Targetable Two-Photon Fluorescent Probes to Image Hypochlorous Acid in Mitochondria and Lysosome in Live Cell and Inflamed Mouse Model. Journal of the American Chemical Society, 2015, 137, 5930-5938.	13.7	472
23	Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. Chemical Communications, 2015, 51, 8044-8047.	4.1	159
24	Evaluating tumor metastatic potential by imaging intratumoral acidosis <i>via</i> p <scp>H</scp> â€activatable nearâ€infrared fluorescent probe. International Journal of Cancer, 2015, 136, E107-16.	5.1	43
25	Up-regulating Blood Brain Barrier Permeability of Nanoparticles via Multivalent Effect. Pharmaceutical Research, 2013, 30, 2538-2548.	3.5	35
26	Activatable Rotor for Quantifying Lysosomal Viscosity in Living Cells. Journal of the American Chemical Society, 2013, 135, 2903-2906.	13.7	363
27	A cyanine based fluorophore emitting both single photon near-infrared fluorescence and two-photon deep red fluorescence in aqueous solution. Organic and Biomolecular Chemistry, 2012, 10, 5366.	2.8	17
28	Imaging acidosis in tumors using a pH-activated near-infrared fluorescence probe. Chemical Communications, 2012, 48, 11677.	4.1	52
29	Two-Order Targeted Brain Tumor Imaging by Using an Optical/Paramagnetic Nanoprobe across the Blood Brain Barrier. ACS Nano, 2012, 6, 410-420.	14.6	172
30	Nose-to-Brain Transport Pathways of Wheat Germ Agglutinin Conjugated PEG-PLA Nanoparticles. Pharmaceutical Research, 2012, 29, 546-558.	3.5	72
31	pH responsive fluorescence nanoprobe imaging of tumors by sensing the acidic microenvironment.	6.7	56