George S Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634644/publications.pdf Version: 2024-02-01

		66343	48315
111	7,964	42	88
papers	citations	h-index	g-index
110	110	110	7100
112	112	112	/192
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanism of action and therapeutic route for a muscular dystrophy caused by a genetic defect in lipid metabolism. Nature Communications, 2022, 13, 1559.	12.8	9
2	Fingolimod attenuates gait deficits in mice subjected to experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2022, 370, 577926.	2.3	2
3	Altered circadian activity and sleep/wake rhythms in the stable tubule only polypeptide (STOP) null mouse model of schizophrenia. Sleep, 2021, 44, .	1.1	4
4	Neuronal mitochondrial calcium uniporter deficiency exacerbates axonal injury and suppresses remyelination in mice subjected to experimental autoimmune encephalomyelitis. Experimental Neurology, 2020, 333, 113430.	4.1	5
5	Homeostatic state of microglia in a rat model of chronic sleep restriction. Sleep, 2020, 43, .	1.1	17
6	The cell-permeable mitochondrial calcium uniporter inhibitor Ru265 preserves cortical neuron respiration after lethal oxygen glucose deprivation and reduces hypoxic/ischemic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1172-1181.	4.3	41
7	Experimental autoimmune encephalomyelitis accelerates remyelination after lysophosphatidylcholine-induced demyelination in the corpus callosum. Journal of Neuroimmunology, 2019, 334, 576995.	2.3	2
8	Synergistic Benefits of Combined Aerobic and Cognitive Training on Fluid Intelligence and the Role of IGF-1 in Chronic Stroke. Neurorehabilitation and Neural Repair, 2019, 33, 199-212.	2.9	45
9	Tamoxifen-induced knockdown of the mitochondrial calcium uniporter in Thy1-expressing neurons protects mice from hypoxic/ischemic brain injury. Cell Death and Disease, 2018, 9, 606.	6.3	42
10	Pioglitazone is superior to quetiapine, clozapine and tamoxifen at alleviating experimental autoimmune encephalomyelitis in mice. Journal of Neuroimmunology, 2018, 321, 72-82.	2.3	12
11	Global ablation of the mitochondrial calcium uniporter increases glycolysis in cortical neurons subjected to energetic stressors. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3027-3041.	4.3	36
12	Mitochondrial Ca2+ uptake pathways. Journal of Bioenergetics and Biomembranes, 2017, 49, 113-119.	2.3	27
13	Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis. Behavioural Brain Research, 2017, 317, 95-108.	2.2	19
14	Sagittal Plane Kinematic Gait Analysis in C57BL/6 Mice Subjected to MOG35-55 Induced Experimental Autoimmune Encephalomyelitis. Journal of Visualized Experiments, 2017, , .	0.3	5
15	Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia. Schizophrenia Bulletin, 2016, 42, 1207-1215.	4.3	11
16	Cochlear protection against cisplatin by viral transfection of X-linked inhibitor of apoptosis protein across round window membrane. Gene Therapy, 2015, 22, 546-552.	4.5	13
17	Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience, 2015, 308, 75-94.	2.3	77
18	Effect of Deletion of cIAP2 on Intestinal Microcirculation in Mouse Endotoxemia and Polybacterial Sepsis. Shock, 2014, 41, 454-457.	2.1	6

#	Article	IF	CITATIONS
19	Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) reduces age-related neuronal degeneration in the mouse cochlea. Gene Therapy, 2014, 21, 967-974.	4.5	7
20	The flavonoid-enriched fraction AF4 suppresses neuroinflammation and promotes restorative gene expression in a mouse model of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 268, 71-83.	2.3	16
21	The cytokine and endocannabinoid systems are co-regulated by NF-κB p65/RelA in cell culture and transgenic mouse models of Huntington's disease and in striatal tissue from Huntington's disease patients. Journal of Neuroimmunology, 2014, 267, 61-72.	2.3	16
22	Over-expression of X-Linked Inhibitor of Apoptosis Protein Modulates Multiple Aspects of Neuronal Ca2+ Signaling. Neurochemical Research, 2013, 38, 847-856.	3.3	0
23	Differential effect of lithium on spermidine/spermine N1-acetyltransferase expression in suicidal behaviour. International Journal of Neuropsychopharmacology, 2013, 16, 2209-2218.	2.1	21
24	Response to â€~Nitric Oxide Synthase Mediation of Darbepoetin's Cognitive Benefits: A Paradoxical Effect?'. Neuropsychopharmacology, 2012, 37, 1075-1075.	5.4	0
25	Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane. Gene Therapy, 2012, 19, 255-263.	4.5	44
26	Target-based selection of flavonoids for neurodegenerative disorders. Trends in Pharmacological Sciences, 2012, 33, 602-610.	8.7	93
27	Neuroprotective and Anti-Inflammatory Effects of the Flavonoid-Enriched Fraction AF4 in a Mouse Model of Hypoxic-Ischemic Brain Injury. PLoS ONE, 2012, 7, e51324.	2.5	37
28	Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chemistry, 2012, 133, 1177-1187.	8.2	47
29	New methods for multiple sclerosis drug discovery. Expert Opinion on Drug Discovery, 2011, 6, 689-699.	5.0	4
30	JNK Inhibition Protects Dopamine Neurons and Provides Behavioral Improvement in a Rat 6-Hydroxydopamine Model of Parkinson's Disease. ACS Chemical Neuroscience, 2011, 2, 207-212.	3.5	40
31	Overexpression of X-linked inhibitor of apoptosis protein protects against noise-induced hearing loss in mice. Gene Therapy, 2011, 18, 560-568.	4.5	34
32	Effects of IFN-B on TRAIL and Decoy Receptor Expression in Different Immune Cell Populations from MS Patients with Distinct Disease Subtypes. Autoimmune Diseases, 2011, 2011, 1-8.	0.6	6
33	Nitric-Oxide Synthase Mediates the Ability of Darbepoetin Alfa to Attenuate Pre-Existing Spatial Working Memory Deficits in Rats Subjected to Transient Global Ischemia. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 437-444.	2.5	8
34	Nitric Oxide Synthase Mediates the Ability of Darbepoetin Alfa to Improve the Cognitive Performance of STOP Null Mice. Neuropsychopharmacology, 2010, 35, 1718-1728.	5.4	14
35	Developmental expression of the cyclin D2 splice variant in postnatal Purkinje cells of the mouse cerebellum. Neuroscience Letters, 2010, 477, 100-104.	2.1	2
36	Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiology of Aging, 2010, 31, 1238-1249.	3.1	34

GEORGE S ROBERTSON

#	Article	IF	CITATIONS
37	Human Kallikrein 6 Cerebrospinal Levels are Elevated in Multiple Sclerosis. Current Drug Discovery Technologies, 2010, 7, 137-140.	1.2	26
38	Triptolide: An inhibitor of a disintegrin and metalloproteinase 10 (ADAM10) in cancer cells. Cancer Biology and Therapy, 2009, 8, 2054-2062.	3.4	43
39	Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy, 2009, 5, 152-158.	9.1	132
40	Programmed Cell Death. , 2009, , 455-473.		2
41	Lack of TIMP-1 increases severity of experimental autoimmune encephalomyelitis: Effects of darbepoetin alfa on TIMP-1 null and wild-type mice. Journal of Neuroimmunology, 2009, 211, 92-100.	2.3	41
42	Expression of the inhibitor of apoptosis protein family in multiple sclerosis reveals a potential immunomodulatory role during autoimmune mediated demyelination. Multiple Sclerosis Journal, 2008, 14, 577-594.	3.0	34
43	Inhibitor of apoptosis protein (IAP) profiling in experimental autoimmune encephalomyelitis (EAE) implicates increased XIAP in T lymphocytes. Journal of Neuroimmunology, 2008, 193, 94-105.	2.3	12
44	Increased X-linked inhibitor of apoptosis protein (XIAP) expression exacerbates experimental autoimmune encephalomyelitis (EAE). Journal of Neuroimmunology, 2008, 203, 79-93.	2.3	17
45	Delayed administration of a potent cyclin dependent kinase and glycogen synthase kinase 3 β inhibitor produces long-term neuroprotection in a hypoxia-ischemia model of brain injury. Neuroscience, 2008, 155, 864-875.	2.3	20
46	Quercetin 3-Glucoside Protects Neuroblastoma (SH-SY5Y) Cells in Vitro against Oxidative Damage by Inducing Sterol Regulatory Element-binding Protein-2-mediated Cholesterol Biosynthesis. Journal of Biological Chemistry, 2008, 283, 2231-2245.	3.4	56
47	Targeting Apoptosis to Treat Multiple Sclerosis. Current Drug Discovery Technologies, 2008, 5, 75-77.	1.2	17
48	X-linked Inhibitor of Apoptosis Regulates T Cell Effector Function. Journal of Immunology, 2007, 179, 7553-7560.	0.8	25
49	Cognitive impairments in the STOP null mouse model of schizophrenia Behavioral Neuroscience, 2007, 121, 826-835.	1.2	46
50	Caspase-3 cleaved spectrin colocalizes with neurofilament-immunoreactive neurons in Alzheimer's disease. Neuroscience, 2006, 141, 863-874.	2.3	27
51	Increased expression of the adipokine genes resistin and fasting-induced adipose factor in hypoxic/ischaemic mouse brain. NeuroReport, 2006, 17, 1195-1198.	1.2	36
52	Neonatal Ventral Hippocampal Lesions Produce an Elevation of ΔFosB-Like Protein(s) in the Rodent Neocortex. Neuropsychopharmacology, 2006, 31, 700-711.	5.4	19
53	Schizophrenia: an integrative approach to modelling a complex disorder. Journal of Psychiatry and Neuroscience, 2006, 31, 157-67.	2.4	22
54	Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience, 2005, 134, 575-582.	2.3	56

GEORGE S ROBERTSON

#	Article	IF	CITATIONS
55	Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington's disease. British Journal of Pharmacology, 2004, 141, 689-697.	5.4	53
56	Clozapine-, but not haloperidol-, induced increases in ΔFosB-like immunoreactivity are completely blocked in the striatum of mice lacking D3 dopamine receptors. European Journal of Neuroscience, 2004, 20, 3189-3194.	2.6	24
57	Effects of fimbria-fornix transection on calpain and choline acetyl transferase activities in the septohippocampal pathway. Neuroscience, 2004, 126, 927-940.	2.3	8
58	Kainic acid-induced naip expression in the hippocampus is blocked in mice lacking TNF receptors. Molecular Brain Research, 2004, 123, 126-131.	2.3	13
59	Endogenous expression of inhibitor of apoptosis proteins in facial motoneurons of neonatal and adult rats following axotomy. Neuroscience, 2003, 117, 567-575.	2.3	11
60	Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Molecular and Cellular Neurosciences, 2003, 22, 405-416.	2.2	214
61	Inhibition of Calpains Prevents Neuronal and Behavioral Deficits in an MPTP Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2003, 23, 4081-4091.	3.6	265
62	Selective, Reversible Caspase-3 Inhibitor Is Neuroprotective and Reveals Distinct Pathways of Cell Death after Neonatal Hypoxic-ischemic Brain Injury. Journal of Biological Chemistry, 2002, 277, 30128-30136.	3.4	163
63	Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience, 2002, 115, 125-136.	2.3	110
64	Automated analysis of global ischemia-induced CA1 neuronal death using terminal UTP nick end labeling (TUNEL). Journal of Neuroscience Methods, 2002, 115, 55-61.	2.5	3
65	Repeated ventral tegmental area amphetamine administration alters dopamine D1 receptor signaling in the nucleus accumbens. Synapse, 2002, 45, 159-170.	1.2	40
66	Caspaseâ€cleaved Amyloid Precursor Protein in Alzheimer's Disease. Brain Pathology, 2002, 12, 430-441.	4.1	37
67	Neuronal Apoptosis Inhibitory Protein Expression after Traumatic Brain Injury in the Mouse. Journal of Neurotrauma, 2001, 18, 1333-1347.	3.4	39
68	Caspase 3 Deficiency Rescues Peripheral Nervous System Defect in Retinoblastoma Nullizygous Mice. Journal of Neuroscience, 2001, 21, 7089-7098.	3.6	34
69	NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6â€OHDA rat model of Parkinson's disease. European Journal of Neuroscience, 2001, 14, 391-400.	2.6	72
70	Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Research, 2001, 920, 84-96.	2.2	67
71	Caspase-3 is activated following axotomy of neonatal facial motoneurons and caspase-3 gene deletion delays axotomy-induced cell death in rodents. European Journal of Neuroscience, 2000, 12, 3469-3480.	2.6	45
72	Neuroprotection by the Inhibition of Apoptosis. Brain Pathology, 2000, 10, 283-292.	4.1	203

GEORGE S ROBERTSON

#	Article	IF	CITATIONS
73	E2F1 Mediates Death of B-amyloid-treated Cortical Neurons in a Manner Independent of p53 and Dependent on Bax and Caspase 3. Journal of Biological Chemistry, 2000, 275, 11553-11560.	3.4	195
74	Involvement of Caspase 3 in Apoptotic Death of Cortical Neurons Evoked by DNA Damage. Molecular and Cellular Neurosciences, 2000, 15, 368-379.	2.2	89
75	Dopamine-receptor stimulation: biobehavioral and biochemical consequences. Trends in Neurosciences, 2000, 23, S92-S100.	8.6	79
76	Bax-Dependent Caspase-3 Activation Is a Key Determinant in p53-Induced Apoptosis in Neurons. Journal of Neuroscience, 1999, 19, 7860-7869.	3.6	352
77	Attenuation of Ischemia-Induced Cellular and Behavioral Deficits by X Chromosome-Linked Inhibitor of Apoptosis Protein Overexpression in the Rat Hippocampus. Journal of Neuroscience, 1999, 19, 5026-5033.	3.6	199
78	Involvement of Caspases in Proteolytic Cleavage of Alzheimer's Amyloid-β Precursor Protein and Amyloidogenic Aβ Peptide Formation. Cell, 1999, 97, 395-406.	28.9	772
79	Increased Mdm2 Expression in Rat Brain after Transient Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 658-669.	4.3	32
80	Immediate-early gene expression in the brain of the thiamine-deficient rat. Journal of Molecular Neuroscience, 1998, 10, 1-15.	2.3	18
81	D1-receptor-related priming is attenuated by antisense-meditated `knockdown' of fosB expression. Molecular Brain Research, 1998, 53, 69-77.	2.3	27
82	Ischemia-induced CA1 neuronal death is preceded by elevated FosB and Jun expression and reduced NGFI-A and JunB levels. Molecular Brain Research, 1998, 56, 146-161.	2.3	26
83	Local Transcriptional Control of Utrophin Expression at the Neuromuscular Synapse. Journal of Biological Chemistry, 1997, 272, 8117-8120.	3.4	72
84	Patterns of Neuronal Activation During Development of Sodium Sensitive Hypertension in SHR. Hypertension, 1997, 30, 1572-1577.	2.7	8
85	Effects of Olanzapine on Regional C-Fos Expression in Rat Forebrain. Neuropsychopharmacology, 1996, 14, 105-110.	5.4	126
86	Chronic Alterations in Dopaminergic Neurotransmission Produce a Persistent Elevation of ΔFosB-like Protein(s) in both the Rodent and Primate Striatum. European Journal of Neuroscience, 1996, 8, 365-381.	2.6	178
87	7-OH-DPAT Differentially Reverses Clozapine- and Haloperidol-induced Increases in Fos-like Immunoreactivity in the Rodent Forebrain. European Journal of Neuroscience, 1996, 8, 2605-2611.	2.6	23
88	Contrasting Effects of Chronic Clozapine, SeroquelTM(ICI 204,636) and Haloperidol Administration on ΔFosB-like Immunoreactivity in the Rodent Forebrain. European Journal of Neuroscience, 1996, 8, 927-936.	2.6	47
89	c-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum. Neuroscience, 1995, 67, 325-344.	2.3	51
90	D1 and D2 dopamine receptors differentially increase fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain. Neuroscience, 1995, 64, 1019-1034.	2.3	133

#	Article	IF	CITATIONS
91	D1 dopamine receptor agonist-induced fos-like immunoreactivity occurs in basal forebrain and mesopontine tegmentum cholinergic neurons and striatal neurons immunoreactive for neuropeptide Y. Neuroscience, 1994, 59, 375-387.	2.3	17
92	Destruction of the nigrostriatal pathway increases Fos-like immunoreactivity predominantly in striatopallidal neurons. Molecular Brain Research, 1993, 19, 156-160.	2.3	40
93	How do atypical antipsychotics work — clues from c-fos studies. European Neuropsychopharmacology, 1993, 3, 236-237.	0.7	0
94	Neuroleptics increase C-FOS expression in the forebrain: Contrasting effects of haloperidol and clozapine. Neuroscience, 1992, 46, 315-328.	2.3	465
95	D1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neuroscience, 1992, 49, 285-296.	2.3	325
96	Scopolamine attenuates haloperidol-induced c-fos expression in the striatum. Brain Research, 1992, 588, 164-167.	2.2	48
97	Lesions of the mesotelencephalic dopamine system enhance the effects of selective dopamine D1 and D2 receptor agonists on striatal acetylcholine release. European Journal of Pharmacology, 1992, 219, 323-325.	3.5	30
98	Sexual behavior increases c-fos expression in the forebrain of the male rat. Brain Research, 1991, 564, 352-357.	2.2	162
99	Dopaminergic grafts in the striatum reduce D1 but not D2 receptor-mediated rotation in 6-OHDA-lesioned rats. Brain Research, 1991, 539, 304-311.	2.2	30
100	Characterization of dopamine release in the substantia nigra by in vivo microdialysis in freely moving rats. Journal of Neuroscience, 1991, 11, 2209-2216.	3.6	144
101	D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience, 1990, 37, 287-294.	2.3	346
102	Dopamine D1 receptor stimulation increases striatal acetylcholine release in the rat. European Journal of Pharmacology, 1990, 186, 335-338.	3.5	97
103	Striatonigral projection neurons contain D1 dopamine receptor-activated c-fos. Brain Research, 1990, 523, 288-290.	2.2	168
104	Evidence that L-dopa-induced rotational behavior is dependent on both striatal and nigral mechanisms. Journal of Neuroscience, 1989, 9, 3326-3331.	3.6	185
105	D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Research, 1989, 503, 346-349.	2.2	281
106	Evidence that the substantia nigra is a site of action for I-DOPA. Neuroscience Letters, 1988, 89, 204-208.	2.1	62
107	Combined L-Dopa and Bromocriptine Therapy for Parkinson's Disease. Clinical Neuropharmacology, 1987, 10, 384-387.	0.7	11
108	D1 and D2 dopamine agonist synergism: separate sites of action?. Trends in Pharmacological Sciences, 1987, 8, 295-299.	8.7	88

#	Article	IF	CITATIONS
109	Synergistic effects of D1 and D2 dopamine agonists on turning behaviour in rats. Brain Research, 1986, 384, 387-390.	2.2	185
110	The antiparkinson action of bromocriptine in combination with levodopa. Trends in Pharmacological Sciences, 1986, 7, 224-225.	8.7	5
111	Desensitization to substance P following intrathecal injection. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 331, 152-158.	3.0	15