Konstantin A Tsetsarkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epididymal epithelium propels early sexual transmission of Zika virus in the absence of interferon signaling. Nature Communications, 2021, 12, 2469.	12.8	6
2	Zika virus tropism during early infectionÂof theÂtesticular interstitium and its role in viral pathogenesis in the testes. PLoS Pathogens, 2020, 16, e1008601.	4.7	21
3	Routes of Zika virus dissemination in the testis and epididymis of immunodeficient mice. Nature Communications, 2018, 9, 5350.	12.8	29
4	A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development. MBio, 2016, 7, .	4.1	118
5	Kissing-loop interaction between 5′ and 3′ ends of tick-borne Langat virus genome â€`bridges the gap' between mosquito- and tick-borne flaviviruses in mechanisms of viral RNA cyclization: applications for virus attenuation and vaccine development. Nucleic Acids Research, 2016, 44, 3330-3350.	14.5	19
6	A Novel Live-Attenuated Vaccine Candidate for Mayaro Fever. PLoS Neglected Tropical Diseases, 2014, 8, e2969.	3.0	48
7	Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nature Communications, 2014, 5, 4084.	12.8	179
8	Photochemical Inactivation of Chikungunya Virus in Human Apheresis Platelet Components by Amotosalen and UVA Light. American Journal of Tropical Medicine and Hygiene, 2013, 88, 1163-1169.	1.4	25
9	Chikungunya virus: evolution and genetic determinants of emergence. Current Opinion in Virology, 2011, 1, 310-317.	5.4	137
10	Chikungunya virus adaptation to Aedes albopictus mosquitoes does not correlate with acquisition of cholesterol dependence or decreased pH threshold for fusion reaction. Virology Journal, 2011, 8, 376.	3.4	38
11	Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7872-7877.	7.1	206
12	Sequential Adaptive Mutations Enhance Efficient Vector Switching by Chikungunya Virus and Its Epidemic Emergence. PLoS Pathogens, 2011, 7, e1002412.	4.7	219
13	Epistatic Roles of E2 Glycoprotein Mutations in Adaption of Chikungunya Virus to Aedes Albopictus and Ae. Aegypti Mosquitoes. PLoS ONE, 2009, 4, e6835.	2.5	184
14	A Single Mutation in Chikungunya Virus Affects Vector Specificity and Epidemic Potential. PLoS Pathogens, 2007, 3, e201.	4.7	1,228
15	Infectious Clones of Chikungunya Virus (La Réunion Isolate) for Vector Competence Studies. Vector-Borne and Zoonotic Diseases, 2006, 6, 325-337.	1.5	183
16	Role of the yellow fever virus structural protein genes in viral dissemination from the Aedes aegypti mosquito midgut. Journal of General Virology, 2006, 87, 2993-3001.	2.9	47
17	Characterization of an infectious clone of the wild-type yellow fever virus Asibi strain that is able to infect and disseminate in mosquitoes. Journal of General Virology, 2005, 86, 1747-1751.	2.9	39