
Marie Joossens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Executioner caspases 3 and 7 are dispensable for intestinal epithelium turnover and homeostasis at steady state. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
2	The Effect of Topical Anesthetics on 16S Ribosomal Ribonucleic Acid Amplicon Sequencing Results in Ocular Surface Microbiome Research. Translational Vision Science and Technology, 2022, 11, 2.	2.2	9
3	In search of viable SARS-CoV-2 in the tear film: a prospective clinical study in hospitalized symptomatic patients Clinical Microbiology and Infection, 2022, , .	6.0	0
4	Fecal Microbiota Transplantation Reduces Symptoms in Some Patients With Irritable Bowel Syndrome With Predominant Abdominal Bloating: Short- and Long-term Results From a Placebo-Controlled Randomized Trial. Gastroenterology, 2021, 160, 145-157.e8.	1.3	109
5	Evaluation of microbial contamination of different pork carcass areas through culture-dependent and independent methods in small-scale slaughterhouses. International Journal of Food Microbiology, 2021, 336, 108902.	4.7	20
6	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	21.4	676
7	Bacterial shifts on broiler carcasses at retail upon frozen storage. International Journal of Food Microbiology, 2021, 340, 109051.	4.7	5
8	The bacterial diversity of raw Moroccon camel milk. International Journal of Food Microbiology, 2021, 341, 109050.	4.7	16
9	Isolation, characterization and antibiotic resistance of Proteus mirabilis from Belgian broiler carcasses at retail and human stool. Food Microbiology, 2021, 96, 103724.	4.2	5
10	Treponema peruense sp. nov., a commensal spirochaete isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	10
11	Gut Microbiome Profiling Uncovers a Lower Abundance of Butyricicoccus in Advanced Stages of Chronic Kidney Disease. Journal of Personalized Medicine, 2021, 11, 1118.	2.5	11
12	Analyses of the Bacterial Contamination on Belgian Broiler Carcasses at Retail Level. Frontiers in Microbiology, 2020, 11, 539540.	3.5	9
13	Unlocking the full potential of probiotics: refocusing on microbial demands. Chinese Medical Journal, 2020, 133, 1765-1767.	2.3	Ο
14	Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms, 2020, 8, 1638.	3.6	41
15	Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nature Microbiology, 2020, 5, 1079-1087.	13.3	144
16	Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients. International Journal of Molecular Sciences, 2020, 21, 1986.	4.1	67
17	Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Annals of Clinical and Translational Neurology, 2020, 7, 406-419.	3.7	59
18	P0703IDENTIFICATION AND QUANTIFICATION OF UREMIC TOXIN PRECURSORS-GENERATING GUT BACTERIA IN CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0

MARIE JOOSSENS

#	Article	IF	CITATIONS
19	Comparison of five assays for DNA extraction from bacterial cells in human faecal samples. Journal of Applied Microbiology, 2020, 129, 378-388.	3.1	14
20	Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney International, 2020, 97, 1230-1242.	5.2	125
21	Influences of Ingredients and Bakers on the Bacteria and Fungi in Sourdough Starters and Bread. MSphere, 2020, 5, .	2.9	47
22	Assessment of food microbiological indicators applied on poultry carcasses by culture combined MALDI-TOF MS identification and 16S rRNA amplicon sequencing. Food Microbiology, 2019, 82, 53-61.	4.2	28
23	Assessment of microbial communities on freshly killed wild boar meat by MALDI-TOF MS and 16S rRNA amplicon sequencing. International Journal of Food Microbiology, 2019, 301, 51-60.	4.7	32
24	The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 2019, 4, 623-632.	13.3	1,206
25	Population-level analysis of <i>Blastocystis</i> subtype prevalence and variation in the human gut microbiota. Gut, 2019, 68, 1180-1189.	12.1	149
26	Lactococci dominate the bacterial communities of fermented maize, sorghum and millet slurries in Zimbabwe. International Journal of Food Microbiology, 2019, 289, 77-87.	4.7	15
27	Gut microbiota dynamics and uraemic toxins: one size does not fit all. Gut, 2019, 68, 2257.1-2260.	12.1	37
28	Determination of the microbiological contamination in minced pork by culture dependent and 16S amplicon sequencing analysis. International Journal of Food Microbiology, 2019, 290, 27-35.	4.7	26
29	Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC. Gut, 2018, 67, 1558-1559.	12.1	46
30	Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC. Gut, 2017, 66, 79-88.	12.1	114
31	Assessment of faecal microbial transfer in irritable bowel syndrome with severe bloating. Gut, 2017, 66, 980-982.	12.1	56
32	Therapeutic Manipulation of the Gut Microbiota Through Diet to Reduce Intestinal Inflammation: Results from the FIT Trial. Gastroenterology, 2017, 152, S1.	1.3	5
33	Brief Report: <i>Dialister</i> as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis and Rheumatology, 2017, 69, 114-121.	5.6	233
34	P767 The FIT trial: anti-inflammatory dietary intervention effects on the intestinal microbiota. Journal of Crohn's and Colitis, 2017, 11, S473-S473.	1.3	1
35	The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers. Frontiers in Microbiology, 2016, 7, 1416.	3.5	99
36	Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut, 2016, 65, 1681-1689.	12.1	312

MARIE JOOSSENS

#	Article	IF	CITATIONS
37	Tu1713 Host-Microbiome Interactions in Primary Sclerosing Cholangitis. Gastroenterology, 2016, 150, S927-S928.	1.3	0
38	Su1909 Genetic Risk for Crohn's Disease has Little Impact on Intestinal Microbiota Composition. Gastroenterology, 2016, 150, S585-S586.	1.3	0
39	Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352, 565-569.	12.6	1,398
40	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	12.6	1,716
41	Concordance in Anti-OmpC and Anti-l2 Indicate the Influence of Genetic Predisposition: Results of a European Study of Twins with Crohn's Disease. Journal of Crohn's and Colitis, 2016, 10, 695-702.	1.3	13
42	Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines. Journal of Crohn's and Colitis, 2016, 10, 735-746.	1.3	37
43	Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2016, 10, 387-394.	1.3	256
44	Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut, 2016, 65, 57-62.	12.1	737
45	Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut, 2015, 64, 447-458.	12.1	185
46	A decrease of the butyrate-producing species <i>Roseburia hominis</i> and <i>Faecalibacterium prausnitzii</i> defines dysbiosis in patients with ulcerative colitis. Gut, 2014, 63, 1275-1283.	12.1	1,353
47	A metagenomic insight into our gut's microbiome. Gut, 2013, 62, 146-158.	12.1	302
48	Metabolic Profiling of the Impact of Oligofructose-Enriched Inulin in Crohn's Disease Patients: A Double-Blinded Randomized Controlled Trial. Clinical and Translational Gastroenterology, 2013, 4, e30.	2,5	72
49	Assessment of the Microbiota in Microdissected Tissues of Crohn's Disease Patients. International Journal of Inflammation, 2012, 2012, 1-11.	1.5	9
50	Effect of oligofructose-enriched inulin (OF-IN) on bacterial composition and disease activity of patients with Crohn's disease: results from a double-blinded randomised controlled trial: Table 1. Gut, 2012, 61, 958-958.	12.1	90
51	Association of Faecalibacterium Prausnitzii and Disease Activity in Ulcerative Colitis. Gastroenterology, 2011, 140, S-142.	1.3	4
52	High-throughput method for comparative analysis of denaturing gradient gel electrophoresis profiles from human fecal samples reveals significant increases in two bifidobacterial species after inulin-type prebiotic intake. FEMS Microbiology Ecology, 2011, 75, 343-349.	2.7	37
53	Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut, 2011, 60, 631-637.	12.1	871
54	Familial aggregation and antimicrobial response dose-dependently affect the risk for Crohn's disease. Inflammatory Bowel Diseases, 2010, 16, 58-67.	1.9	34

MARIE JOOSSENS

#	Article	IF	CITATIONS
55	Clustering of (auto)immune diseases with early-onset and complicated inflammatory bowel disease. European Journal of Pediatrics, 2009, 168, 575-583.	2.7	8
56	Candida albicans Colonization and ASCA in Familial Crohn's Disease. American Journal of Gastroenterology, 2009, 104, 1745-1753.	0.4	172
57	Coamplification of Eukaryotic DNA with 16S rRNA Gene-Based PCR Primers: Possible Consequences for Population Fingerprinting of Complex Microbial Communities. Current Microbiology, 2008, 56, 553-557.	2.2	50
58	P200 MUCOSAL GENE SIGNATURES TO PREDICT RESPONSE TO INFLIXIMAB IN PATIENTS WITH INFLAMMATORY BOWEL DISEASE. Journal of Crohn S and Colitis Supplements, 2008, 2, 64.	0.0	0
59	Mutations in pattern recognition receptor genes modulate seroreactivity to microbial antigens in patients with inflammatory bowel disease. Gut, 2007, 56, 1536-1542.	12.1	91
60	New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut, 2007, 56, 1394-1403.	12.1	267
61	Familial Crohn's Disease in Belgium. Journal of Clinical Gastroenterology, 2007, 41, 583-590.	2.2	18
62	Contribution of genetic and environmental factors in the pathogenesis of Crohn's disease in a large family with multiple cases. Inflammatory Bowel Diseases, 2007, 13, 580-584.	1.9	24
63	Cluster of Crohn's disease in Herny, France, including 2 cases from a common residence. Inflammatory Bowel Diseases, 2007, 13, 1454-1455.	1.9	4
64	The role of vascular endothelial growth factor (VEGF) in inflammatory bowel disease. Inflammatory Bowel Diseases, 2006, 12, 870-878.	1.9	46
65	Environmental Factors in Familial Crohn's Disease in Belgium. Inflammatory Bowel Diseases, 2005, 11, 360-365.	1.9	69
66	Crohn's Disease and Month of Birth. Inflammatory Bowel Diseases, 2005, 11, 597-599.	1.9	32
67	No association between month of birth and Crohn's disease. Gastroenterology, 2003, 124, A215.	1.3	0