Zhong-Qiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163357/publications.pdf Version: 2024-02-01

		30070	53230
226	9,101	54	85
papers	citations	h-index	g-index
222	222	222	2475
233	233	233	3475
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Permian–Triassic phylogenetic and morphologic evolution of rhynchonellide brachiopods. Paleobiology, 2022, 48, 99-119.	2.0	4
2	Improved taxonomic definition based on the ontogenetic series of Griesbachian-Dienerian conodonts from the Early Triassic of northwestern Pakistan. Global and Planetary Change, 2022, 208, 103703.	3.5	4
3	Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Research, 2022, 368, 106496.	2.7	7
4	Mercury enrichments during the Carnian Pluvial Event (Late Triassic) in South China. Bulletin of the Geological Society of America, 2022, 134, 2709-2720.	3.3	13
5	Linkage of the late Cambrian microbe-metazoan transition (MMT) to shallow-marine oxygenation during the SPICE event. Global and Planetary Change, 2022, 213, 103798.	3.5	12
6	Microbial Blooms Triggered Pyrite Framboid Enrichment and Oxygen Depletion in Carbonate Platforms Immediately After the Latest Permian Extinction. Geophysical Research Letters, 2022, 49, .	4.0	10
7	Keratose sponge fabrics from the lowermost Triassic microbialites in South China: Geobiologic features and Phanerozoic evolution. Global and Planetary Change, 2022, 211, 103787.	3.5	9
8	A late Paleoproterozoic microfossil community from siliceous granules, Dahongyu Formation, North China. Precambrian Research, 2022, 377, 106723.	2.7	2
9	Editorial preface to special issue: Extreme environments and biotic responses during the Neoproterozoic-Phanerozoic transition. Global and Planetary Change, 2022, 215, 103894.	3.5	1
10	Resilience of infaunal ecosystems during the Early Triassic greenhouse Earth. Science Advances, 2022, 8, .	10.3	14
11	Catastrophic event sequences across the Permian-Triassic boundary in the ocean and on land. Global and Planetary Change, 2022, 215, 103890.	3.5	5
12	Mercury anomalies across the Cryogenian-Ediacaran boundary in South China. Precambrian Research, 2022, 379, 106771.	2.7	2
13	Infaunal response during the end-Permian mass extinction. Bulletin of the Geological Society of America, 2021, 133, 91-99.	3.3	9
14	Late Ordovician paleoceanographic change: Sedimentary and geochemical evidence from Northwest Tarim and Middle Yangtze region, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110070.	2.3	8
15	Middle Permian trace fossil assemblages from the Carnarvon Basin of Western Australia: Implications for the evolution of ichnofaunas in wave-dominated siliciclastic shoreface settings across the Permian-Triassic boundary. Global and Planetary Change, 2021, 197, 103392.	3.5	4
16	Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210148.	2.6	10
17	Early Carboniferous brachiopod fauna from the Altai Mountains, northern Xinjiang, Central Asia: Systematics, and palaeobiogeographic and palaeogeographical implications. Geological Journal, 2021, 56, 6000-6021.	1.3	4
18	Early Triassic microconchids from the Perth Basin, Western Australia: Palaeoecology and flourishing in the aftermath of the <scp>endâ€Permian</scp> mass extinction. Geological Journal, 2021, 56, 6210-6222.	1.3	5

#	Article	IF	CITATIONS
19	Coronene, mercury, and biomarker data support a link between extinction magnitude and volcanic intensity in the Late Devonian. Global and Planetary Change, 2021, 199, 103452.	3.5	27
20	Hydrocarbon compound evidence in marine successions of South China for frequent wildfires during the Permian-Triassic transition. Global and Planetary Change, 2021, 200, 103472.	3.5	7
21	Environmental changes in the Middle Triassic lacustrine basin (Ordos, North China): Implication for biotic recovery of freshwater ecosystem following the Permian-Triassic mass extinction. Global and Planetary Change, 2021, 204, 103559.	3.5	13
22	Early Cambrian oceanic oxygenation and evolution of early animals: A critical review from the South China Craton. Global and Planetary Change, 2021, 204, 103561.	3.5	10
23	Oxidizing atmosphere and life on land during the late Paleoproterozoic outset of the "boring billion― Precambrian Research, 2021, 364, 106361.	2.7	12
24	Marine productivity variations and environmental perturbations across the early Triassic Smithian-Spathian boundary: Insights from zinc and carbon isotopes. Global and Planetary Change, 2021, 205, 103579.	3.5	1
25	Characteristics of Hg concentrations and isotopes in terrestrial and marine facies across the end-Permian mass extinction. Global and Planetary Change, 2021, 205, 103592.	3.5	11
26	End-Permian terrestrial disturbance followed by the complete plant devastation, and the vegetation proto-recovery in the earliest-Triassic recorded in coastal sea sediments. Global and Planetary Change, 2021, 205, 103621.	3.5	8
27	Integrated biochemostratigraphy of the Permian-Triassic boundary beds in a shallow carbonate platform setting (Yangou, South China). Global and Planetary Change, 2021, 206, 103583.	3.5	5
28	An atypical Burgess Shale-type fossil assemblage from Cambrian Stage 4 of the Jingshan area, South China: Taphonomy, palaeoecology, and global correlations. Global and Planetary Change, 2021, 206, 103640.	3.5	2
29	Lower Triassic conodont biostratigraphy of the Guryul Ravine section, Kashmir. Global and Planetary Change, 2021, 207, 103671.	3.5	13
30	Biotic and palaeoecological variations in the Permian-Triassic boundary microbialite (Xiejiacao, South) Tj ETQq0 0 Change, 2021, 207, 103679.	0 rgBT /0 3.5	verlock 10 Tf 7
31	Late <scp>Palaeozoicâ€Mesozoic</scp> palaeontology and stratigraphy in China: A tribute to the achievements of Professor Zhuoting Liao. Geological Journal, 2021, 56, 5863-5881.	1.3	1
32	The Anisian (Middle Triassic) brachiopod fauna from Qingyan, Guizhou, south-western China. Journal of Systematic Palaeontology, 2020, 18, 647-701.	1.5	6
33	Lower Triassic carbonate δ238U record demonstrates expanded oceanic anoxia during Smithian Thermal Maximum and improved ventilation during Smithian-Spathian boundary cooling event. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 539, 109393.	2.3	21
34	Trace fossils as proxy for biotic recovery after the end-Permian mass extinction: A critical review. Earth-Science Reviews, 2020, 203, 103059.	9.1	20
35	Global carbon cycle perturbations triggered by volatile volcanism and ecosystem responses during the Carnian Pluvial Episode (late Triassic). Earth-Science Reviews, 2020, 211, 103404.	9.1	14
36	A proposed ontogenesis and evolutionary lineage of conodont Eurygnathodus costatus and its role in defining the base of the Olenekian (Lower Triassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 559, 109916.	2.3	14

#	Article	IF	CITATIONS
37	Anomalous marine calcium cycle linked to carbonate factory change after the Smithian Thermal Maximum (Early Triassic). Earth-Science Reviews, 2020, 211, 103418.	9.1	13
38	Phylogenetic and ecomorphologic diversifications of spiriferinid brachiopods after the end-Permian extinction. Paleobiology, 2020, 46, 495-510.	2.0	6
39	Comparison of Ediacaran platform and slope δ238U records in South China: Implications for global-ocean oxygenation and the origin of the Shuram Excursion. Geochimica Et Cosmochimica Acta, 2020, 287, 111-124.	3.9	28
40	Reprint of: "Gondolelloid multielement conodont apparatus (Nicoraella) from the Middle Triassic of Yunnan Province, southwestern China― Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549, 109670.	2.3	0
41	Transient and stepwise ocean oxygenation during the late Ediacaran Shuram Excursion: Insights from carbonate δ238U of northwestern Mexico. Precambrian Research, 2020, 344, 105741.	2.7	30
42	Unusual shallow marine matground-adapted benthic biofacies from the Lower Triassic of the northern Paleotethys: Implications for biotic recovery following the end-Permian mass extinction. Earth-Science Reviews, 2019, 189, 194-219.	9.1	24
43	Small microbialites from the basal Triassic mudstone (Tieshikou, Jiangxi, South China): Geobiologic features, biogenicity, and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 221-235.	2.3	15
44	Microbially induced sedimentary structures (MISSs) from the Lower Triassic Kockatea Formation, northern Perth Basin, Western Australia: Palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 236-247.	2.3	18
45	Gondolelloid multielement conodont apparatus (Nicoraella) from the Middle Triassic of Yunnan Province, southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522, 98-110.	2.3	18
46	Global-ocean circulation changes during the Smithian–Spathian transition inferred from carbon‑sulfur cycle records. Earth-Science Reviews, 2019, 195, 114-132.	9.1	33
47	Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic. Earth-Science Reviews, 2019, 189, 21-50.	9.1	84
48	Permian–Triassic Climatic and Environmental Extremes and Biotic Response (IGCP 630: 2014–2018): Goals and Achievements. Acta Geologica Sinica, 2019, 93, 780-782.	1.4	1
49	The Early Triassic Jurong fish fauna, South China: Age, anatomy, taphonomy, and global correlation. Global and Planetary Change, 2019, 180, 33-50.	3.5	9
50	Apparatus architecture of the conodont Nicoraella kockeli (Gondolelloidea, Prioniodinina) constrains functional interpretations. Palaeontology, 2019, 62, 823-835.	2.2	4
51	Global mercury cycle during the end-Permian mass extinction and subsequent Early Triassic recovery. Earth and Planetary Science Letters, 2019, 513, 144-155.	4.4	72
52	The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria. Earth-Science Reviews, 2019, 195, 7-36.	9.1	62
53	Reconstruction of atmospheric CO2 concentration during the late Changhsingian based on fossil conifers from the Dalong Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 37-48.	2.3	23
54	Paleoclimate proxies for cyclostratigraphy: Comparative analysis using a Lower Triassic marine section in South China. Earth-Science Reviews, 2019, 189, 125-146.	9.1	107

#	Article	IF	CITATIONS
55	Organic-matter-rich shales of China. Earth-Science Reviews, 2019, 189, 51-78.	9.1	340
56	Two-stage marine anoxia and biotic response during the Permian–Triassic transition in Kashmir, northern India: pyrite framboid evidence. Global and Planetary Change, 2019, 172, 124-139.	3.5	71
57	Uppermost Permian to Lower Triassic conodont successions from the Enshi area, western Hubei Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 49-64.	2.3	25
58	An intercalibrated Triassic conodont succession and carbonate carbon isotope profile, Kamura, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 65-83.	2.3	30
59	Volcanism, redox conditions, and microbialite growth linked with the end-Permian mass extinction: Evidence from the Xiajiacao section (western Hubei Province), South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 194-208.	2.3	23
60	Restoration of reef ecosystems following the Guadalupian–Lopingian boundary mass extinction: Evidence from the Laibin area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 8-22.	2.3	19
61	Early Middle Triassic trace fossils from the Luoping Biota, southwestern China: Evidence of recovery from mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 515, 6-22.	2.3	21
62	A diverse trackway-dominated marine ichnoassemblage from the Lower Triassic in the northern Paleotethys: Ichnology and implications for biotic recovery. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 124-140.	2.3	12
63	Convergent continental margin volcanic source for ash beds at the Permian-Triassic boundary, South China: Constraints from trace elements and Hf-isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 154-165.	2.3	31
64	A new species of Platysiagum from the Luoping Biota (Anisian, Middle Triassic, Yunnan, South China) reveals the relationship between Platysiagidae and Neopterygii. Geological Magazine, 2019, 156, 669-682.	1.5	9
65	Youngest ambient inclusion trails from Middle Triassic phosphatized coprolites, southwestern China: New insights into an old intriguing phenomenon. Gondwana Research, 2018, 55, 60-73.	6.0	5
66	Additional records of ichnogenus Rhizocorallium from the Lower and Middle Triassic, South China: Implications for biotic recovery after the end-Permian mass extinction. Bulletin of the Geological Society of America, 2018, 130, 1197-1215.	3.3	21
67	Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: Confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology, 2018, 46, 327-330.	4.4	108
68	Great Paleozoic-Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang. Journal of Earth Science (Wuhan, China), 2018, 29, 721-732.	3.2	14
69	Palaeoecological Analysis of Trace Fossil Sinusichnus sinuosus from the Middle Triassic Guanling Formationin Southwestern China. Journal of Earth Science (Wuhan, China), 2018, 29, 854-863.	3.2	11
70	A Taxonomic Re-Assessment of the Novispathodus waageni Group and Its Role in Defining the Base of the Olenekian (Lower Triassic). Journal of Earth Science (Wuhan, China), 2018, 29, 824-836.	3.2	20
71	Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments. Earth and Planetary Science Letters, 2018, 496, 159-167.	4.4	103
72	Microbial proliferation coinciding with volcanism during the Permian–Triassic transition: New, direct evidence from volcanic ashes, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474, 164-186.	2.3	21

#	Article	IF	CITATIONS
73	Proliferation of MISS-related microbial mats following the end-Permian mass extinction in the northern Paleo-Tethys: Evidence from southern Qilianshan region, western China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474, 198-213.	2.3	26
74	Taphonomy and palaeobiology of early Middle Triassic coprolites from the Luoping biota, southwest China: Implications for reconstruction of fossil food webs. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474, 232-246.	2.3	31
75	Expansion of photic-zone euxinia during the Permian–Triassic biotic crisis and its causes: Microbial biomarker records. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474, 140-151.	2.3	25
76	A Smithian (Early Triassic) ichnoassemblage from Lichuan, Hubei Province, South China: Implications for biotic recovery after the latest Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486, 123-141.	2.3	19
77	Permian–Triassic boundary microbialites at Zuodeng Section, Guangxi Province, South China: Geobiology and palaeoceanographic implications. Global and Planetary Change, 2017, 152, 115-128.	3.5	47
78	Controls on regional marine redox evolution during Permian-Triassic transition in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486, 17-32.	2.3	36
79	An Early Triassic (Smithian) stromatolite associated with giant ooid banks from Lichuan (Hubei) Tj ETQq1 1 0.784 Palaeoclimatology, Palaeoecology, 2017, 486, 108-122.	1314 rgBT 2.3	/Overlock 10 18
80	New insights into microbial smectite illitization in the Permo-Triassic boundary K-bentonites, South China. Applied Clay Science, 2017, 140, 96-111.	5.2	22
81	Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486, 96-107.	2.3	58
82	Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis. Geochimica Et Cosmochimica Acta, 2017, 210, 184-207.	3.9	30
83	A Permian-Triassic boundary microbialite deposit from the eastern Yangtze Platform (Jiangxi Province,) Tj ETQq1 Palaeoclimatology, Palaeoecology, 2017, 486, 58-73.	1 0.78431 2.3	4 rgBT /Ov <mark>er</mark> 54
84	Tentative identification of diagenetic products of cyclic biphytanes in sedimentary rocks from the uppermost Permian and Lower Triassic. Organic Geochemistry, 2017, 111, 144-153.	1.8	8
85	Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi Province, South) Tj ETQq1 1 0. bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486, 6-16.	784314 rg 2.3	gBT /Overlad 28
86	Weathering and alteration of volcanic ashes in various depositional settings during the Permian-Triassic transition in South China: Mineralogical, elemental and isotopic approaches. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486, 46-57.	2.3	21
87	Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology, 2017, 45, 163-166.	4.4	110
88	Anisian (Middle Triassic) marine ichnocoenoses from the eastern and western margins of the Kamdian Continent, Yunnan Province, SW China: Implications for the Triassic biotic recovery. Global and Planetary Change, 2017, 157, 194-213.	3.5	17
89	Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction. Scientific Reports, 2017, 7, 5304.	3.3	82
90	Comment on "Quantitative biochronology of the Permian–Triassic boundary in South China based on conodont unitary associationsâ€by Brosse et al. (2016). Farth-Science Reviews, 2017, 164, 257-258	9.1	6

#	Article	IF	CITATIONS
91	Latest Permian to Middle Triassic redox condition variations in ramp settings, South China: Pyrite framboid evidence. Bulletin of the Geological Society of America, 2017, 129, 229-243.	3.3	91
92	Microbially induced sedimentary structures from the 1.64 Ga Chuanlinggou Formation, Jixian, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474, 7-25.	2.3	17
93	Permian–Triassic evolution of the Bivalvia: Extinction-recovery patterns linked to ecologic and taxonomic selectivity. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459, 53-62.	2.3	17
94	Proliferation of MISS-related microbial mats following the end-Permian mass extinction in terrestrial ecosystems: Evidence from the Lower Triassic of the Yiyang area, Henan Province, North China. Sedimentary Geology, 2016, 333, 50-69.	2.1	44
95	Upper Lower Triassic stromatolite from Anhui, South China: Geobiologic features and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 452, 40-54.	2.3	25
96	Permian radiolarians from the A'nyemaqen mélange zone in the Huashixia area of Madoi County, Qinghai Province, Western China, and their implications on regional tectonism. Journal of Earth Science (Wuhan, China), 2016, 27, 623-630.	3.2	5
97	Effects of soil erosion and anoxic–euxinic ocean in the Permian–Triassic marine crisis. Heliyon, 2016, 2, e00137.	3.2	45
98	Early Carboniferous spiriferoid brachiopods from the Qaidam Basin, Northwest China: Taxonomy, biostratigraphy and biogeography. Palaeoworld, 2016, 25, 581-599.	1.1	5
99	Sedimentology and ichnology of two Lower Triassic sections in South China: Implications for the biotic recovery following the end-Permian mass extinction. Global and Planetary Change, 2016, 144, 198-212.	3.5	30
100	Obliquity-forced climate during the Early Triassic hothouse in China. Geology, 2016, 44, 623-626.	4.4	112
101	Secular changes in environmental stresses and eukaryotes during the Early Triassic to the early Middle Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451, 35-45.	2.3	11
102	Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: evidence from the Gufeng Formation of western Hubei Province. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 444, 1-14.	2.3	75
103	Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth and Planetary Science Letters, 2016, 441, 10-25.	4.4	140
104	Diagenetic uptake of rare earth elements by conodont apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458, 176-197.	2.3	76
105	A new genus <i>Liaous</i> of early Anisian Stage (Middle Triassic) brachiopods from southwestern China: systematics, reassessment of classification of the Spiriferinioidea, community paleoecology, and paleoenvironmental implications. Journal of Paleontology, 2015, 89, 966-979.	0.8	10
106	Cycle-calibrated magnetostratigraphy of middle Carnian from South China: Implications for Late Triassic time scale and termination of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 436, 135-166.	2.3	60
107	Correction of two Upper Paleozoic stratigraphic units in the Tianshan Mountains region, Xinjiang Uygur Autonomous Region and implications on the Late Paleozoic evolution of Tianshan tectonic complex, Northwest China. Journal of Palaeogeography, 2015, 4, 358-370.	1.9	15
108	Palaeoecology of microconchids from microbialites near the Permian–Triassic boundary in South China. Lethaia, 2015, 48, 497-508.	1.4	40

#	Article	IF	CITATIONS
109	Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic. Biogeosciences, 2015, 12, 1597-1613.	3.3	56
110	Ages, trace elements and Hf-isotopic compositions of zircons from claystones around the Permian-Triassic boundary in the Zunyi Section, South China: Implications for nature and tectonic setting of the volcanism. Journal of Earth Science (Wuhan, China), 2015, 26, 872-882.	3.2	27
111	Global oolite deposits across the Permian–Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis. Earth-Science Reviews, 2015, 149, 163-180.	9.1	68
112	Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth-Science Reviews, 2015, 149, 181-202.	9.1	195
113	Vegetation changeover across the Permian–Triassic Boundary in Southwest China. Earth-Science Reviews, 2015, 149, 203-224.	9.1	102
114	Microconchids from microbialites near the Permian-Triassic boundary in the Zuodeng Section, Baise area, Guangxi Zhuang Autonomous Region, South China and their paleoenvironmental implications. Journal of Earth Science (Wuhan, China), 2015, 26, 157-165.	3.2	26
115	Exceptionally preserved caddisfly larval cases (Insecta) from the lower Cretaceous of the Liupanshan basin, Western China. Journal of Earth Science (Wuhan, China), 2015, 26, 192-202.	3.2	11
116	Complete biotic and sedimentary records of the Permian–Triassic transition from Meishan section, South China: Ecologically assessing mass extinction and its aftermath. Earth-Science Reviews, 2015, 149, 67-107.	9.1	149
117	ORGANISM-ENVIRONMENT INTERACTIONS DURING THE PERMIAN-TRIASSIC MASS EXTINCTION AND ITS AFTERMATH. Palaios, 2014, 28, 661-663.	1.3	6
118	Orbital forcing and sea-level changes in the Earliest Triassic of the Meishan Section, South China. Journal of Earth Science (Wuhan, China), 2014, 25, 64-73.	3.2	12
119	Multidisciplinary studies of global Carboniferous stage boundaries: towards a better definition and global correlations: an introduction. Geological Magazine, 2014, 151, 199-200.	1.5	2
120	A rapid and synchronous initiation of the wide spread Cryogenian glaciations. Precambrian Research, 2014, 255, 401-411.	2.7	107
121	A comparison of pelagic, littoral, and riverine bacterial assemblages in Lake Bangongco, Tibetan Plateau. FEMS Microbiology Ecology, 2014, 89, 211-221.	2.7	22
122	Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: Implications for regional stratigraphic correlation and early evolution of eukaryotes. Precambrian Research, 2014, 251, 21-32.	2.7	51
123	Early Middle Triassic stromatolites from the Luoping area, Yunnan Province, Southwest China: Geobiologic features and environmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 412, 124-140.	2.3	37
124	Early Triassic stromatolites in a siliciclastic nearshore setting in northern Perth Basin, Western Australia: Geobiologic features and implications for post-extinction microbial proliferation. Global and Planetary Change, 2014, 121, 89-100.	3.5	61
125	Reprint of "Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction― Earth-Science Reviews, 2014, 137, 85-128.	9.1	22
126	Extinction patterns among bivalves in South China during the Permian–Triassic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399, 78-88.	2.3	14

#	Article	IF	CITATIONS
127	Nothosaur foraging tracks from the Middle Triassic of southwestern China. Nature Communications, 2014, 5, 3973.	12.8	29
128	Global review of the Permian–Triassic mass extinction and subsequent recovery: Part I. Earth-Science Reviews, 2014, 137, 1-5.	9.1	23
129	Extreme euxinia just prior to the Middle Triassic biotic recovery from the latest Permian mass extinction. Organic Geochemistry, 2014, 73, 113-122.	1.8	18
130	New arthropod traces from the Lower Triassic Kockatea Shale Formation, northern Perth Basin, Western Australia: ichnology, taphonomy and palaeoecology. Geological Journal, 2014, 49, 163-176.	1.3	18
131	Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change, 2013, 105, 7-20.	3.5	173
132	A terrestrial vegetation turnover in the middle of the Early Triassic. Global and Planetary Change, 2013, 105, 152-159.	3.5	39
133	Microbially induced sedimentary structures from the Mesoproterozoic Huangqikou Formation, Helan Mountain region, northern China. Precambrian Research, 2013, 233, 73-92.	2.7	26
134	Salinity Impact on Bacterial Community Composition in Five High-Altitude Lakes from the Tibetan Plateau, Western China. Geomicrobiology Journal, 2013, 30, 462-469.	2.0	36
135	Origin of volcanic ash beds across the Permian–Triassic boundary, Daxiakou, South China: Petrology and U–Pb age, trace elements and Hf-isotope composition of zircon. Chemical Geology, 2013, 360-361, 41-53.	3.3	59
136	Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis?. Global and Planetary Change, 2013, 105, 135-151.	3.5	107
137	Ether lipids from the Lower and Middle Triassic at Qingyan, Guizhou Province, Southern China. Organic Geochemistry, 2013, 58, 27-42.	1.8	16
138	Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth-Science Reviews, 2013, 125, 199-243.	9.1	123
139	Proliferation of MISS-forming microbial mats after the late Neoproterozoic glaciations: Evidence from the Kimberley region, NW Australia. Precambrian Research, 2013, 224, 529-550.	2.7	28
140	UPPERMOST PERMIAN TO LOWER TRIASSIC CONODONT ZONATION FROM THREE GORGES AREA, SOUTH CHINA. Palaios, 2013, 28, 523-540.	1.3	78
141	CARBONATE RETICULATED RIDGE STRUCTURES FROM THE LOWER MIDDLE TRIASSIC OF THE LUOPING AREA, YUNNAN, SOUTHWESTERN CHINA: GEOBIOLOGIC FEATURES AND IMPLICATIONS FOR EXCEPTIONAL PRESERVATION OF THE LUOPING BIOTA. Palaios, 2013, 28, 541-551.	1.3	34
142	Astronomical Dating of the Middle Miocene Hanjiang Formation in the Pearl River Mouth Basin, South China Sea. Acta Geologica Sinica, 2013, 87, 48-58.	1.4	5
143	Stratal architecture and platform evolution of an early Frasnian synâ€ŧectonic carbonate platform, Canning Basin, Australia. Sedimentology, 2013, 60, 1583-1620.	3.1	14
144	Hydrothermal origin of the Paleoproterozoic xenotime from the King Leopold Sandstone of the Kimberley Group, Kimberley, NW Australia: Implications for a <i>ca</i> 1.7 Ga far-field hydrothermal event. Australian Journal of Earth Sciences, 2013, 60, 497-508.	1.0	15

#	Article	IF	CITATIONS
145	Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval: REPLY. Geology, 2012, 40, e268-e268.	4.4	2
146	Exceptionally preserved microbially induced sedimentary structures from the Ediacaran post-glacial successions in the Kimberley region, northwestern Australia. Precambrian Research, 2012, 200-203, 1-25.	2.7	33
147	A New Basal Actinopterygian Fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China. Acta Palaeontologica Polonica, 2012, 57, 149-160.	0.4	36
148	Uppermost Permian reefs from the Wubaiti structure in eastern Sichuan, China: implications for exploration of natural gas reservoirs. Geological Journal, 2012, 47, 509-523.	1.3	7
149	Preface: â€~Upper Palaeozoic reef complexes and carbonate platforms'. Geological Journal, 2012, 47, 447-449.	1.3	0
150	Changes in depth-transect redox conditions spanning the end-Permian mass extinction and their impact on the marine extinction: Evidence from biomarkers and sulfur isotopes. Global and Planetary Change, 2012, 94-95, 20-32.	3.5	43
151	An 17O record of late Neoproterozoic glaciation in the Kimberley region, Western Australia. Precambrian Research, 2012, 216-219, 152-161.	2.7	22
152	The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 2012, 5, 375-383.	12.9	614
153	A Late Carboniferous algal mound from the Tarim Basin, NW China: internal structure and palaeoecology. Geological Journal, 2012, 47, 477-494.	1.3	10
154	Scanning electron microscopic imaging and nano-secondary ion microprobe analyses of bacteria-like nanoball structures in oncoids from the Ediacaran Boonall Dolomite of Kimberley, northwestern Australia: testing their biogenicity. Carbonates and Evaporites, 2012, 27, 33-41.	1.0	4
155	Possible animal body fossils from the Late Neoproterozoic interglacial successions in the Kimberley region, northwestern Australia. Gondwana Research, 2012, 21, 293-301.	6.0	25
156	Early Triassic trace fossils from Gondwana Interior Sea: Implication for ecosystem recovery following the end-Permian mass extinction in south high-latitude region. Gondwana Research, 2012, 22, 238-255.	6.0	65
157	Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology, 2011, 39, 739-742.	4.4	131
158	Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 111-128.	2.3	117
159	Evolutionary dynamics of the Permian–Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 98-110.	2.3	92
160	Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299, 449-474.	2.3	102
161	Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 1-11.	2.3	277
162	Environmental determinants and ecologic selectivity of benthic faunas from nearshore to bathyal zones in the end-Permian mass extinction: Brachiopod evidence from South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 84-97.	2.3	22

#	Article	IF	CITATIONS
163	Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U–Pb dating and geochemical characteristics. Gondwana Research, 2011, 20, 485-497.	6.0	135
164	Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology, 2011, 39, 779-782.	4.4	61
165	The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2274-2282.	2.6	116
166	Euxinic ocean during the Late Devonian mass extinction inferred from organic compounds. Journal of Earth Science (Wuhan, China), 2010, 21, 94-95.	3.2	2
167	A new trace-fossil assemblage from the Lower Triassic of Western Australia. Journal of Earth Science (Wuhan, China), 2010, 21, 115-117.	3.2	3
168	Brachiopod assemblages from the early Middle Triassic of Qingyan, Guizhou, Southwest China. Journal of Earth Science (Wuhan, China), 2010, 21, 121-124.	3.2	1
169	Marine ecosystem changes from the latest Permian to Middle Triassic in Qingyan area, Guizhou, Southwest China. Journal of Earth Science (Wuhan, China), 2010, 21, 125-129.	3.2	10
170	An abrupt decrease in atmospheric oxygen by massive release of hydrogen sulfide during the end-Permian mass extinction. Journal of Earth Science (Wuhan, China), 2010, 21, 141-142.	3.2	2
171	Preface: Late Permian–Early Triassic Earth. Global and Planetary Change, 2010, 73, 1-2.	3.5	5
172	Structural changes of marine communities over the Permian–Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath. Global and Planetary Change, 2010, 73, 123-140.	3.5	90
173	Palaeoecology and taphonomy of two brachiopod shell beds from the Anisian (Middle Triassic) of Guizhou, Southwest China: Recovery of benthic communities from the end-Permian mass extinction. Global and Planetary Change, 2010, 73, 149-160.	3.5	23
174	<i>Paleodictyon</i> from a nearshore paleoenvironmental setting in the Guadalupian (Middle Permian) of the Carnarvon Basin, Western Australia. Australian Journal of Earth Sciences, 2010, 57, 453-467.	1.0	13
175	A late Changhsingian (latest Permian) deep-water brachiopod fauna from Guizhou, South China. Alcheringa, 2009, 33, 163-183.	1.2	15
176	Effects of Middle–Late Permian sea-level changes and mass extinction on the formation of the Tieqiao skeletal mound in the Laibin area, South China. Australian Journal of Earth Sciences, 2009, 56, 745-763.	1.0	58
177	Permian–Triassic mass extinction and subsequent recovery: an update. Australian Journal of Earth Sciences, 2009, 56, 741-744.	1.0	5
178	Middle Permian seamount from Xiahe area, Gansu Province, Northwest China: Zircon U-Pb age, biostratigraphy and tectonic implications. Journal of Earth Science (Wuhan, China), 2009, 20, 364-380.	3.2	4
179	Two episodes of foraminiferal extinction near the Permian–Triassic boundary at the Meishan section, South China. Australian Journal of Earth Sciences, 2009, 56, 765-773.	1.0	68
180	End-Permian mass extinction of foraminifers in the Nanpanjiang basin, South China. Journal of Paleontology, 2009, 83, 718-738.	0.8	66

#	Article	IF	CITATIONS
181	Possible causes for a negative shift in the stable carbon isotope ratio before, during and after the end-Permian mass extinction in Meishan, South China. Australian Journal of Earth Sciences, 2009, 56, 799-808.	1.0	29
182	Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Australian Journal of Earth Sciences, 2009, 56, 775-797.	1.0	90
183	Brachiopod faunas across the Wuchiapingian-Changhsingian (Late Permian) boundary at the stratotype section and subsurface of Changxing area, South China. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2009, 254, 315-335.	0.4	11
184	Anachronistic facies in the Lower Triassic of South China and their implications to the ecosystems during the recovery time. Science in China Series D: Earth Sciences, 2008, 51, 1646-1657.	0.9	27
185	A carbonâ€isotopic study of an endâ€Permian massâ€extinction horizon, Bulla, northern Italy: a negative δ ¹³ C shift prior to the marine extinction. Terra Nova, 2008, 20, 253-258.	2.1	13
186	Onset of biotic and environmental recovery from the end-Permian mass extinction within 1–2Âmillion years: A case study of the Lower Triassic of the Meishan section, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 176-187.	2.3	68
187	Paleoredox, biotic and sulfur-isotopic changes associated with the end-Permian mass extinction in the western Tethys. Chemical Geology, 2007, 244, 483-492.	3.3	59
188	LAST ORTHOTETID BRACHIOPODS FROM THE UPPERMOST PERMIAN OF SOUTH CHINA. Journal of Paleontology, 2007, 81, 986-997.	0.8	11
189	Early Triassic carbon isotope excursions from South China: proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geological Journal, 2007, 42, 371-389.	1.3	131
190	A sulfur isotope event at the end of the Permian. Chemical Geology, 2006, 235, 33-47.	3.3	58
191	Isogramma Meek and Worthen, 1870 (Dictyonellida, Brachiopoda) from the upper Palaeozoic of East Asia: Implications for biogeography and evolutionary trends. Journal of Asian Earth Sciences, 2006, 26, 405-423.	2.3	3
192	Middle Permian brachiopods from the Tumenling Formation in the Wuchang area, southern Heilongjiang, NE China, and their palaeobiogeographical implications. Journal of Asian Earth Sciences, 2006, 26, 327-338.	2.3	11
193	Lower Permian oncolites from South China: Implications for equatorial sea-level responses to Late Palaeozoic Gondwanan glaciation. Journal of Asian Earth Sciences, 2006, 26, 424-436.	2.3	33
194	End-Permian extinction and subsequent recovery of the Ophiuroidea (Echinodermata). Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236, 321-344.	2.3	55
195	Close-up of the end-Permian mass extinction horizon recorded in the Meishan section, South China: Sedimentary, elemental, and biotic characterization and a negative shift of sulfate sulfur isotope ratio. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239, 396-405.	2.3	75
196	An ecologically mixed brachiopod fauna from Changhsingian deep-water basin of South China: consequence of end-Permian global warming. Lethaia, 2006, 39, 79-90.	1.4	34
197	Survival brachiopod faunas of the end-Permian mass extinction from the southern Alps (Italy) and South China. Geological Magazine, 2006, 143, 301-327.	1.5	63
198	Early Carboniferous brachiopod faunas from the Baoshan block, west Yunnan, southwest China. Alcheringa, 2005, 29, 31-85.	1.2	16

#	Article	IF	CITATIONS
199	Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: A global review. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224, 270-290.	2.3	110
200	A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223, 172-180.	2.3	55
201	Survival strategies of brachiopod faunas from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224, 232-269.	2.3	109
202	UPPERMOST MISSISSIPPIAN BRACHIOPODS FROM THE BASAL ITAITUBA FORMATION OF THE AMAZON BASIN, BRAZIL. Journal of Paleontology, 2005, 79, 907-926.	0.8	29
203	New ophiuroids from the Permian/Triassic boundary beds of South China. Palaeontology, 2004, 47, 1301-1312.	2.2	20
204	Devonian–Carboniferous brachiopod zonation in the Tarim Basin, northwest China: implications for biostratigraphy and biogeography. Geological Journal, 2004, 39, 431-458.	1.3	27
205	Pennsylvanian (Carboniferous) brachiopods from the Itaituba Formation of the Amazon Basin, Brazil. Alcheringa, 2004, 28, 441-468.	1.2	7
206	Internal structure and paleoecology of the lower Permian Uzunbulak reef complex of the Tarim Basin, Northwest China. Facies, 2003, 49, 119-134.	1.4	11
207	Global Review of Permian Muir-Wood and Cooper, 1960 (Brachiopoda): Morphology, Palaeobiogeographical and Palaeogeographical Implications. Gondwana Research, 2003, 6, 777-790.	6.0	7
208	Sequence stratigraphy and correlation of late Carboniferous and Permian in the CIS, Europe, Tethyan area, North Africa, Arabia, China, Gondwanaland and the USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 196, 59-84.	2.3	56
209	EARLY CARBONIFEROUS ATHYRIDID BRACHIOPODS FROM THE QAIDAM BASIN, NORTHWEST CHINA. Journal of Paleontology, 2003, 77, 844-862.	0.8	8
210	Late Paleozoic depositional history of the Tarim basin, northwest China: An integration of biostratigraphic and lithostratigraphic constraints. AAPG Bulletin, 2003, 87, 1323-1354.	1.5	60
211	Early Carboniferous athyridid brachiopods from the Qaidam Basin, northwest China. Journal of Paleontology, 2003, 77, 844-862.	0.8	5
212	NEW CHONOSTROPHIID BRACHIOPODS FROM THE FAMENNIAN (LATE DEVONIAN) OF THE SANTANGHU BASIN, XINJIANG, NORTHWEST CHINA. Journal of Paleontology, 2002, 76, 229-238.	0.8	4
213	New chonostrophiid brachiopods from the Famennian (Late Devonian) of the Santanghu Basin, Xinjiang, northwest China. Journal of Paleontology, 2002, 76, 229-238.	0.8	1
214	PermophricodothyrisPavlova, 1965 (Brachiopoda, Spiriferida) from the Permian of South China: its morphology, biostratigraphy and distribution. Palaontologische Zeitschrift, 2002, 76, 369-383.	1.6	8
215	A New Genus of Rhynchonellid Brachiopod from the Lower Triassic of South China and Implications for Timing the Recovery of Brachiopoda After the End-Permian Mass Extinction. Palaeontology, 2002, 45, 149-164.	2.2	52
216	End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 2001, 29, 815.	4.4	236

#	Article	IF	CITATIONS
217	Permian Brachiopods from the Selong Xishan section, Xiang (Tibet), China. Part 2: Palaeobiogeographical and palaeoecological implications, Spiriferida, Athyridida and Terebratulida. Geobios, 2001, 34, 157-182.	1.4	41
218	Late Carboniferous to Early Permian brachiopod faunas from the Bachu and Kalpin areas, Tarim Basin, NW China. Alcheringa, 2001, 25, 293-326.	1.2	25
219	A new tribe of dictyoclostid brachiopods from the Lower Permian of the Tarim Basin, north-west China. Palaeontology, 2000, 43, 325-342.	2.2	5
220	Tournaisian-Visean brachiopods from the Gancaohu area of Southern Tienshan Mountains, Xinjiang, NW China. Geobios, 2000, 33, 183-199.	1.4	11
221	Bashkirian to Moscovian(Late Carboniferous) brachiopod faunas from the Western Kunlun Mountains, Northwest China. Geobios, 2000, 33, 543-560.	1.4	7
222	Permian brachiopods from the SelongXishan section, Xizang (Tibet), China Part 1: Stratigraphy, Strophomenida, Productida and Rhynchonellida. Geobios, 2000, 33, 725-752.	1.4	46
223	Chuiellagen. nov. (Brachiopoda) and palaeoecology from the Lower Carboniferous of the Kunlun Mountains, NW China. Alcheringa, 1999, 23, 259-275.	1.2	14
224	Coelacanths from the Middle Triassic Luoping Biota, Yunnan, South China, with the earliest evidence of ovoviviparity. Acta Palaeontologica Polonica, 0, , .	0.4	14
225	Biotic responses to volatile volcanism and environmental stresses over the Guadalupian-Lopingian (Permian) transition. Geology, 0, , .	4.4	10
226	Locomotion and feeding trails produced by crabs. Geological Journal, 0, , .	1.3	1