Robert C Duncan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1633389/publications.pdf Version: 2024-02-01

POREDT C DUNCAN

#	Article	IF	CITATIONS
1	Tracking ebolavirus genomic drift with a resequencing microarray. PLoS ONE, 2022, 17, e0263732.	2.5	1
2	The use of laserâ€based diagnostics for the rapid identification of blood borne viruses in human plasma samples. Journal of Applied Microbiology, 2021, , .	3.1	1
3	The use of laserâ€based diagnostics for the rapid identification of infectious agents in human blood. Journal of Applied Microbiology, 2019, 126, 1606-1617.	3.1	4
4	Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: promises and pitfalls - an update. Expert Review of Molecular Diagnostics, 2019, 19, 15-25.	3.1	6
5	A novel signal sequence negative multimeric glycosomal protein required for cell cycle progression of Leishmania donovani parasites. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1148-1159.	4.1	4
6	Highly Multiplex Real-Time PCR–Based Screening for Blood-Borne Pathogens on an OpenArray Platform. Journal of Molecular Diagnostics, 2017, 19, 549-560.	2.8	8
7	Comparison of multiplex PCR hybridization-based and singleplex real-time PCR-based assays for detection of low prevalence pathogens in spiked samples. Journal of Microbiological Methods, 2017, 132, 76-82.	1.6	9
8	Standardized methods to generate mock (spiked) clinical specimens by spiking blood or plasma with cultured pathogens. Journal of Applied Microbiology, 2016, 120, 1119-1129.	3.1	13
9	Multiplex detection and identification of viral, bacterial, and protozoan pathogens in human blood and plasma using a highâ€density resequencing pathogen microarray platform. Transfusion, 2016, 56, 1537-1547.	1.6	7
10	Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: promises and pitfalls. Expert Review of Molecular Diagnostics, 2016, 16, 83-95.	3.1	18
11	Deletion of Ubiquitin Fold Modifier Protein Ufm1 Processing Peptidase Ufsp in L. donovani Abolishes Ufm1 Processing and Alters Pathogenesis. PLoS Neglected Tropical Diseases, 2014, 8, e2707.	3.0	17
12	Characterization of Cross-Protection by Genetically Modified Live-Attenuated <i>Leishmania donovani</i> Parasites against <i>Leishmania mexicana</i> . Journal of Immunology, 2014, 193, 3513-3527.	0.8	56
13	Multiplex Screening for Blood-Borne Viral, Bacterial, and Protozoan Parasites using an OpenArray Platform. Journal of Molecular Diagnostics, 2014, 16, 136-144.	2.8	22
14	Advancing Molecular Diagnostics for Trypanosomatid Parasites. Journal of Molecular Diagnostics, 2014, 16, 379-381.	2.8	6
15	Current Status and Future Challenges for the Development of Genetically Altered Live Attenuated Leishmania Vaccines. , 2014, , 45-66.		1
16	Live Attenuated <i>Leishmania donovani</i> p27 Gene Knockout Parasites Are Nonpathogenic and Elicit Long-Term Protective Immunity in BALB/c Mice. Journal of Immunology, 2013, 190, 2138-2149.	0.8	94
17	A New Model of Progressive Visceral Leishmaniasis in Hamsters by Natural Transmission via Bites of Vector Sand Flies. Journal of Infectious Diseases, 2013, 207, 1328-1338.	4.0	70
18	Leishmania donovani Argininosuccinate Synthase Is an Active Enzyme Associated with Parasite Pathogenesis. PLoS Neglected Tropical Diseases, 2012, 6, e1849.	3.0	16

ROBERT C DUNCAN

#	Article	IF	CITATIONS
19	Downregulation of Mitogen-Activated Protein Kinase 1 of Leishmania donovani Field Isolates Is Associated with Antimony Resistance. Antimicrobial Agents and Chemotherapy, 2012, 56, 518-525.	3.2	41
20	Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites. Journal of Tropical Medicine, 2012, 2012, 1-12.	1.7	64
21	Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in <i>Leishmania donovani</i> results in loss of βâ€oxidation of fatty acids and blocks cell division in the amastigote stage. Molecular Microbiology, 2012, 86, 187-198.	2.5	42
22	Identification and Characterization of Genes Involved in <i>Leishmania</i> Pathogenesis: The Potential for Drug Target Selection. Molecular Biology International, 2011, 2011, 1-10.	1.7	16
23	Mitochondrial Associated Ubiquitin Fold Modifier-1 Mediated Protein Conjugation in Leishmania donovani. PLoS ONE, 2011, 6, e16156.	2.5	23
24	Characterization of a <i>Leishmania</i> stageâ€specific mitochondrial membrane protein that enhances the activity of cytochrome <i>c</i> oxidase and its role in virulence. Molecular Microbiology, 2010, 77, 399-414.	2.5	73
25	Overexpression of histone H2A modulates drug susceptibility in Leishmania parasites. International Journal of Antimicrobial Agents, 2010, 36, 50-57.	2.5	78
26	Comparative in vivo expression of amastigote up regulated Leishmania genes in three different forms of Leishmaniasis. Parasitology International, 2010, 59, 262-264.	1.3	15
27	Intracellular Replication-Deficient <i>Leishmania donovani</i> Induces Long Lasting Protective Immunity against Visceral Leishmaniasis. Journal of Immunology, 2009, 183, 1813-1820.	0.8	163
28	Biomarkers of Attenuation in the Leishmania donovani Centrin Gene Deleted Cell Line-Requirements for Safety in a Live Vaccine Candidate. The Open Parasitology Journal, 2009, 3, 14-23.	1.7	5
29	A <i>Leishmania</i> minicircle DNA footprint assay for sensitive detection and rapid speciation of clinical isolates. Transfusion, 2008, 48, 1787-1798.	1.6	36
30	Transcriptome analysis during the process ofin vitrodifferentiation ofLeishmania donovaniusing genomic microarrays. Parasitology, 2007, 134, 1527-1539.	1.5	40
31	Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples. Biochemical and Biophysical Research Communications, 2007, 356, 1017-1023.	2.1	26
32	Upregulation of surface proteins in Leishmania donovani isolated from patients of post kala-azar dermal leishmaniasis. Microbes and Infection, 2006, 8, 637-644.	1.9	47
33	Cloning and characterization of angiotensin converting enzyme related dipeptidylcarboxypeptidase from Leishmania donovani. Molecular and Biochemical Parasitology, 2006, 145, 147-157.	1.1	21
34	Genetically modified live attenuated parasites as vaccines for leishmaniasis. Indian Journal of Medical Research, 2006, 123, 455-66.	1.0	19
35	A Multiplex Polymerase Chain Reaction Microarray Assay to Detect Bioterror Pathogens in Blood. Journal of Molecular Diagnostics, 2005, 7, 486-494.	2.8	50
36	A Novel Semiquantitative Fluorescence-Based Multiplex Polymerase Chain Reaction Assay for Rapid Simultaneous Detection of Bacterial and Parasitic Pathogens from Blood. Journal of Molecular Diagnostics, 2005, 7, 268-275.	2.8	29

ROBERT C DUNCAN

#	Article	IF	CITATIONS
37	The Application of Gene Expression Microarray Technology to Kinetoplastid Research. Current Molecular Medicine, 2004, 4, 611-621.	1.3	40
38	Centrin Gene Disruption Impairs Stage-specific Basal Body Duplication and Cell Cycle Progression in Leishmania. Journal of Biological Chemistry, 2004, 279, 25703-25710.	3.4	122
39	DNA microarray analysis of protozoan parasite gene expression: outcomes correlate with mechanisms of regulation. Trends in Parasitology, 2004, 20, 211-215.	3.3	32
40	DNA Polymorphism Assay Distinguishes Isolates of Leishmania donovani That Cause Kala-Azar from Those That Cause Post-Kala-Azar Dermal Leishmaniasis in Humans. Journal of Clinical Microbiology, 2004, 42, 1739-1741.	3.9	26
41	Programmed cell death in trypanosomatids and other unicellular organisms. International Journal for Parasitology, 2003, 33, 257-267.	3.1	154
42	An in vitro system for developmental and genetic studies of Leishmania donovani phosphoglycans. Molecular and Biochemical Parasitology, 2003, 130, 31-42.	1.1	163
43	Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death and Differentiation, 2002, 9, 53-64.	11.2	253
44	Expression of a Mutant Form of Leishmania donovani Centrin Reduces the Growth of the Parasite. Journal of Biological Chemistry, 2001, 276, 43253-43261.	3.4	71
45	Rubella Virus E2 Signal Peptide Is Required for Perinuclear Localization of Capsid Protein and Virus Assembly. Journal of Virology, 2001, 75, 1978-1983.	3.4	28
46	Early response gene expression during differentiation of cultured Leishmania donovani. Parasitology Research, 2001, 87, 897-906.	1.6	23
47	Rubella Virus Capsid Protein Induces Apoptosis in Transfected RK13 Cells. Virology, 2000, 275, 20-29.	2.4	41
48	Rubella Virus-Induced Apoptosis Varies among Cell Lines and Is Modulated by Bcl-XLand Caspase Inhibitors. Virology, 1999, 255, 117-128.	2.4	47
49	La autoantigen binding to a $5\hat{a}\in^2$ cis-element of rubella virus RNA correlates with element function in vivo. Gene, 1997, 201, 137-149.	2.2	19
50	A Unique Transactivation Sequence Motif Is Found in the Carboxyl-Terminal Domain of the Single-Strand-Binding Protein FBP. Molecular and Cellular Biology, 1996, 16, 2274-2282.	2.3	67
51	Isolation and characterization of Leishmania donovani calreticulin gene and its conservation of the RNA binding activity. Molecular and Biochemical Parasitology, 1996, 81, 53-64.	1.1	51
52	The Far Upstream Element-binding Proteins Comprise an Ancient Family of Single-strand DNA-binding Transactivators. Journal of Biological Chemistry, 1996, 271, 31679-31687.	3.4	156
53	Targeted Melting and Binding of a DNA Regulatory Element by a Transactivator of c-myc. Journal of Biological Chemistry, 1995, 270, 8241-8248.	3.4	64
54	A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif Genes and Development, 1994, 8, 465-480.	5.9	297

ROBERT C DUNCAN

#	Article	IF	CITATIONS
55	Myc-1 is centromeric to the linkage group Ly-6–Sis–Gdc-1 on mouse chromosome 15. Immunogenetics, 1988, 27, 215-219.	2.4	39
56	Genes that modify expression of major urinary proteins in mice Molecular and Cellular Biology, 1988, 8, 2705-2712.	2.3	18
57	Chromosomal location of the regulator of mouse alpha-fetoprotein, Afr-1 Genetics, 1988, 119, 687-691.	2.9	22
58	Genetic Map Location of Afr-1: Results From Four Genetic Crosses. Current Topics in Microbiology and Immunology, 1988, 137, 264-267.	1.1	2
59	Genes That Modify Expression of Major Urinary Proteins in Mice. Molecular and Cellular Biology, 1988, 8, 2705-2712.	2.3	12
60	Programmed cell death in the unicellular protozoan parasite Leishmania. , 0, .		3