
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1633011/publications.pdf Version: 2024-02-01

KONDAD D KODDINC

#	Article	IF	CITATIONS
1	The relationship between text message sentiment and self-reported depression. Journal of Affective Disorders, 2022, 302, 7-14.	4.1	19
2	Energy expenditure does not solely explain step length–width choices during walking. Journal of Experimental Biology, 2022, 225, .	1.7	2
3	Neuromatch Academy: a 3-week, online summer school in computational neuroscience. The Journal of Open Source Education, 2022, 5, 118.	0.4	0
4	Causal mapping of human brain function. Nature Reviews Neuroscience, 2022, 23, 361-375.	10.2	106
5	Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. Wiley Interdisciplinary Reviews: Cognitive Science, 2021, 12, e1553.	2.8	22
6	Towards Democratizing and Automating Online Conferences: Lessons from the Neuromatch Conferences. Trends in Cognitive Sciences, 2021, 25, 265-268.	7.8	13
7	Might a Single Neuron Solve Interesting Machine Learning Problems Through Successive Computations on Its Dendritic Tree?. Neural Computation, 2021, 33, 1554-1571.	2.2	18
8	MoVi: A large multi-purpose human motion and video dataset. PLoS ONE, 2021, 16, e0253157.	2.5	35
9	Neuromatch Academy: Teaching Computational Neuroscience with Global Accessibility. Trends in Cognitive Sciences, 2021, 25, 535-538.	7.8	14
10	Do Biological Constraints Impair Dendritic Computation?. Neuroscience, 2021, , .	2.3	4
11	Machine Learning and Surgical Outcomes Prediction: A Systematic Review. Journal of Surgical Research, 2021, 264, 346-361.	1.6	34
12	A smartphone-based online system for fall detection with alert notifications and contextual information of real-life falls. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 124.	4.6	10
13	Recording Temporal Signals with Minutes Resolution Using Enzymatic DNA Synthesis. Journal of the American Chemical Society, 2021, 143, 16630-16640.	13.7	12
14	Evaluation of Changes in Depression, Anxiety, and Social Anxiety Using Smartphone Sensor Features: Longitudinal Cohort Study. Journal of Medical Internet Research, 2021, 23, e22844.	4.3	39
15	Quantifying causality in data science with quasi-experiments. Nature Computational Science, 2021, 1, 24-32.	8.0	21
16	On PDE Characterization of Smooth Hierarchical Functions Computed by Neural Networks. Neural Computation, 2021, 33, 3204-3263.	2.2	1
17	From Prior Information to Saccade Selection: Evolution of Frontal Eye Field Activity during Natural Scene Search. Cerebral Cortex, 2020, 30, 1957-1973.	2.9	5
18	Probing the Effective Treatment Thresholds for Alteplase in Acute Ischemic Stroke With Regression Discontinuity Designs. Frontiers in Neurology, 2020, 11, 961.	2.4	3

#	Article	IF	CITATIONS
19	A three-dimensional thalamocortical dataset for characterizing brain heterogeneity. Scientific Data, 2020, 7, 358.	5.3	11
20	Computer Vision to Automatically Assess Infant Neuromotor Risk. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2431-2442.	4.9	56
21	Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nature Communications, 2020, 11, 4238.	12.8	156
22	A web-based automated machine learning platform to analyze liquid biopsy data. Lab on A Chip, 2020, 20, 2166-2174.	6.0	15
23	A How-to-Model Guide for Neuroscience. ENeuro, 2020, 7, ENEURO.0352-19.2019.	1.9	14
24	Machine Learning for Neural Decoding. ENeuro, 2020, 7, ENEURO.0506-19.2020.	1.9	123
25	Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset XML Dataset. Journal of Open Source Software, 2020, 5, 1979.	4.6	15
26	Improving on legacy conferences by moving online. ELife, 2020, 9, .	6.0	68
27	Toward a scalable framework for reproducible processing of volumetric, nanoscale neuroimaging datasets. CigaScience, 2020, 9, .	6.4	5
28	Limiting motor skill knowledge via incidental training protects against choking under pressure. Psychonomic Bulletin and Review, 2019, 26, 279-290.	2.8	13
29	A Deep Dive to Illuminate V4 Neurons. Trends in Neurosciences, 2019, 42, 563-564.	8.6	0
30	Quantifying How Staining Methods Bias Measurements of Neuron Morphologies. Frontiers in Neuroinformatics, 2019, 13, 36.	2.5	16
31	On Functions Computed on Trees. Neural Computation, 2019, 31, 2075-2137.	2.2	1
32	A deep learning framework for neuroscience. Nature Neuroscience, 2019, 22, 1761-1770.	14.8	563
33	Pose estimates from online videos show that side-by-side walkers synchronize movement under naturalistic conditions. PLoS ONE, 2019, 14, e0217861.	2.5	23
34	Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 2045-2051.	1.6	102
35	Sensorimotor priors are effector dependent. Journal of Neurophysiology, 2019, 122, 389-397.	1.8	12
36	Towards learning-to-learn. Current Opinion in Behavioral Sciences, 2019, 29, 45-50.	3.9	10

#	Article	IF	CITATIONS
37	Smartwatches Can Detect Walker and Cane Use in Older Adults. Innovation in Aging, 2019, 3, igz008.	0.1	15
38	Policies or knowledge: priors differ between a perceptual and sensorimotor task. Journal of Neurophysiology, 2019, 121, 2267-2275.	1.8	9
39	Spectral Weighting Underlies Perceived Sound Elevation. Scientific Reports, 2019, 9, 1642.	3.3	15
40	The roles of supervised machine learning in systems neuroscience. Progress in Neurobiology, 2019, 175, 126-137.	5.7	88
41	Machine Learning for Phone-Based Relationship Estimation. , 2019, 3, 1-23.		2
42	Ten Simple Rules for Organizing and Running a Successful Intensive Two-Week Course. Neural Computation, 2019, 31, 1-7.	2.2	16
43	A muscle-activity-dependent gain between motor cortex and EMG. Journal of Neurophysiology, 2019, 121, 61-73.	1.8	37
44	Relationship Between Sleep Quality and Mood: Ecological Momentary Assessment Study. JMIR Mental Health, 2019, 6, e12613.	3.3	61
45	Quantifying the role of neurons for behavior is a mediation question. Behavioral and Brain Sciences, 2019, 42, e233.	0.7	4
46	Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline. Trends in Cognitive Sciences, 2018, 22, 365-367.	7.8	22
47	Machine learning to detect signatures of disease in liquid biopsies – a user's guide. Lab on A Chip, 2018, 18, 395-405.	6.0	106
48	A Pipeline for Distributed Segmentation of Teravoxel Tomography Datasets. Microscopy and Microanalysis, 2018, 24, 166-167.	0.4	2
49	Modern Machine Learning as a Benchmark for Fitting Neural Responses. Frontiers in Computational Neuroscience, 2018, 12, 56.	2.1	56
50	Quasi-experimental causality in neuroscience and behavioural research. Nature Human Behaviour, 2018, 2, 891-898.	12.0	72
51	The development of Bayesian integration in sensorimotor estimation. Journal of Vision, 2018, 18, 8.	0.3	24
52	Linear-nonlinear-time-warp-poisson models of neural activity. Journal of Computational Neuroscience, 2018, 45, 173-191.	1.0	39
53	Single reach plans in dorsal premotor cortex during a two-target task. Nature Communications, 2018, 9, 3556.	12.8	61
54	Improving the Accuracy of Scores to Predict Gastrostomy after Intracerebral Hemorrhage with Machine Learning. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 3570-3574.	1.6	7

#	Article	IF	CITATIONS
55	The sociology of scientific validity: How professional networks shape judgement in peer review. Research Policy, 2018, 47, 1825-1841.	6.4	56
56	Scaling of Optogenetically Evoked Signaling in a Higher-Order Corticocortical Pathway in the Anesthetized Mouse. Frontiers in Systems Neuroscience, 2018, 12, 16.	2.5	10
57	Population coding of conditional probability distributions in dorsal premotor cortex. Nature Communications, 2018, 9, 1788.	12.8	36
58	High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. Nucleic Acids Research, 2018, 46, e78-e78.	14.5	19
59	Behavioral tracking gets real. Nature Neuroscience, 2018, 21, 1146-1147.	14.8	29
60	Although optimal models are useful, optimality claims are not that common. Behavioral and Brain Sciences, 2018, 41, e228.	0.7	1
61	Dynamic remapping in Monkey Frontal Eye Field preserves a retinotopic representation during visual search, then compresses space toward the search target Journal of Vision, 2018, 18, 202.	0.3	1
62	Using noise to shape motor learning. Journal of Neurophysiology, 2017, 117, 728-737.	1.8	26
63	Using and understanding cross-validation strategies. Perspectives on Saeb etÂal GigaScience, 2017, 6, 1-6.	6.4	97
64	Sensor Fusion to Infer Locations of Standing and Reaching Within the Home in Incomplete Spinal Cord Injury. American Journal of Physical Medicine and Rehabilitation, 2017, 96, S128-S134.	1.4	2
65	Credit assignment between body and object probed by an object transportation task. Scientific Reports, 2017, 7, 13415.	3.3	8
66	Dopaminergic medication increases reliance on current information in Parkinson's disease. Nature Human Behaviour, 2017, 1, 0129.	12.0	24
67	DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase. Scientific Reports, 2017, 7, 4756.	3.3	13
68	A cryptography-based approach for movement decoding. Nature Biomedical Engineering, 2017, 1, 967-976.	22.5	41
69	Understand the cogs to understand cognition. Behavioral and Brain Sciences, 2017, 40, e272.	0.7	1
70	EMG Versus Torque Control of Human–Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 660-667.	4.9	29
71	Adaptation to random and systematic errors: Comparison of amputee and non-amputee control interfaces with varying levels of process noise. PLoS ONE, 2017, 12, e0170473.	2.5	28
72	Meaningless comparisons lead to false optimism in medical machine learning. PLoS ONE, 2017, 12, e0184604.	2.5	44

#	Article	IF	CITATIONS
73	The integration of probabilistic information during sensorimotor estimation is unimpaired in children with Cerebral Palsy. PLoS ONE, 2017, 12, e0188741.	2.5	6
74	Could a Neuroscientist Understand a Microprocessor?. PLoS Computational Biology, 2017, 13, e1005268.	3.2	188
75	Ten simple rules for structuring papers. PLoS Computational Biology, 2017, 13, e1005619.	3.2	48
76	Predicting rhesus monkey eye movements during natural-image search. Journal of Vision, 2017, 17, 12.	0.3	3
77	The need to approximate the use-case in clinical machine learning. GigaScience, 2017, 6, 1-9.	6.4	911
78	Pain: A Statistical Account. PLoS Computational Biology, 2017, 13, e1005142.	3.2	76
79	Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography. ENeuro, 2017, 4, ENEURO.0195-17.2017.	1.9	74
80	Scalable Passive Sleep Monitoring Using Mobile Phones: Opportunities and Obstacles. Journal of Medical Internet Research, 2017, 19, e118.	4.3	33
81	Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting. Journal of Medical Internet Research, 2017, 19, e184.	4.3	46
82	Mobile Phone Detection of Semantic Location and Its Relationship to Depression and Anxiety. JMIR MHealth and UHealth, 2017, 5, e112.	3.7	84
83	Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications. JMIR MHealth and UHealth, 2017, 5, e151.	3.7	31
84	Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models. JMIR Rehabilitation and Assistive Technologies, 2017, 4, e8.	2.2	7
85	Saccadic suppression as a perceptual consequence of efficient sensorimotor estimation. ELife, 2017, 6, .	6.0	35
86	Nucleotide-time alignment for molecular recorders. PLoS Computational Biology, 2017, 13, e1005483.	3.2	0
87	The Development and Analysis of Integrated Neuroscience Data. Frontiers in Computational Neuroscience, 2016, 10, 11.	2.1	13
88	Toward an Integration of Deep Learning and Neuroscience. Frontiers in Computational Neuroscience, 2016, 10, 94.	2.1	400
89	Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications. PLoS ONE, 2016, 11, e0158423.	2.5	77
90	Chunking as the result of an efficiency computation trade-off. Nature Communications, 2016, 7, 12176.	12.8	80

#	Article	IF	CITATIONS
91	Activity recognition in patients with lower limb impairments: Do we need training data from each patient?. , 2016, 2016, 3265-3268.		17
92	Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 35.	4.6	19
93	Role of expected reward in frontal eye field during natural scene search. Journal of Neurophysiology, 2016, 116, 645-657.	1.8	39
94	Feature-based attention and spatial selection in frontal eye fields during natural scene search. Journal of Neurophysiology, 2016, 116, 1328-1343.	1.8	30
95	To the Cloud! A Grassroots Proposal to Accelerate Brain Science Discovery. Neuron, 2016, 92, 622-627.	8.1	46
96	A Probabilistic Analysis of Muscle Force Uncertainty for Control. IEEE Transactions on Biomedical Engineering, 2016, 63, 2359-2367.	4.2	3
97	The Statistical Determinants of the Speed of Motor Learning. PLoS Computational Biology, 2016, 12, e1005023.	3.2	73
98	Speed Constancy or Only Slowness: What Drives the Kappa Effect. PLoS ONE, 2016, 11, e0154013.	2.5	12
99	Premotor and Motor Cortices Encode Reward. PLoS ONE, 2016, 11, e0160851.	2.5	72
100	Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex. ELife, 2016, 5, .	6.0	34
101	The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ, 2016, 4, e2537.	2.0	229
102	High-Reproducibility and High-Accuracy Method for Automated Topic Classification. Physical Review X, 2015, 5, .	8.9	45
103	The Relationship between Clinical, Momentary, and Sensor-based Assessment of Depression. , 2015, 2015, .		68
104	Using psychophysics to ask if the brain samples or maximizes. Journal of Vision, 2015, 15, .	0.3	19
105	Deep networks for motor control functions. Frontiers in Computational Neuroscience, 2015, 9, 32.	2.1	20
106	Over my fake body: body ownership illusions for studying the multisensory basis of own-body perception. Frontiers in Human Neuroscience, 2015, 9, 141.	2.0	348
107	Making Activity Recognition Robust against Deceptive Behavior. PLoS ONE, 2015, 10, e0144795.	2.5	9
108	Similar trial-by-trial adaptation behavior across transhumeral amputees and able-bodied subjects. ,		5

2015, , . 108

#	Article	IF	CITATIONS
109	Web-Based Assessment of Outcomes After Subarachnoid and Intracerebral Hemorrhage: A New Patient Centered Option for Outcomes Assessment. Neurocritical Care, 2015, 23, 22-27.	2.4	21
110	Modeling peripheral visual acuity enables discovery of gaze strategies at multiple time scales during natural scene search. Journal of Vision, 2015, 15, 19.	0.3	4
111	Carrot or stick in motor learning. Nature Neuroscience, 2015, 18, 480-481.	14.8	2
112	Neural coordination during reach-to-grasp. Journal of Neurophysiology, 2015, 114, 1827-1836.	1.8	21
113	Predicting Cognitive Function from Clinical Measures of Physical Function and Health Status in Older Adults. PLoS ONE, 2015, 10, e0119075.	2.5	22
114	Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization. PLoS ONE, 2015, 10, e0131593.	2.5	8
115	Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study. Journal of Medical Internet Research, 2015, 17, e175.	4.3	549
116	Automatic discovery of cell types and microcircuitry from neural connectomics. ELife, 2015, 4, e04250.	6.0	53
117	Dealing with Target Uncertainty in a Reaching Control Interface. PLoS ONE, 2014, 9, e86811.	2.5	3
118	Multimodal decoding and congruent sensory information enhance reaching performance in subjects with cervical spinal cord injury. Frontiers in Neuroscience, 2014, 8, 123.	2.8	8
119	Does EMG control lead to distinct motor adaptation?. Frontiers in Neuroscience, 2014, 8, 302.	2.8	26
120	How much to trust the senses: Likelihood learning. Journal of Vision, 2014, 14, 13-13.	0.3	25
121	The effects of training breadth on motor generalization. Journal of Neurophysiology, 2014, 112, 2791-2798.	1.8	21
122	The effect of powered prosthesis control signals on trial-by-trial adaptation to visual perturbations. , 2014, 2014, 3512-5.		1
123	Saliency and Saccade Encoding in the Frontal Eye Field During Natural Scene Search. Cerebral Cortex, 2014, 24, 3232-3245.	2.9	55
124	Bayesian statistics: relevant for the brain?. Current Opinion in Neurobiology, 2014, 25, 130-133.	4.2	35
125	Computer Use Changes Generalization of Movement Learning. Current Biology, 2014, 24, 82-85.	3.9	24
126	Motor learning of novel dynamics is not represented in a single global coordinate system: evaluation of mixed coordinate representations and local learning. Journal of Neurophysiology, 2014, 111, 1165-1182.	1.8	74

#	Article	IF	CITATIONS
127	Multifaceted aspects of chunking enable robust algorithms. Journal of Neurophysiology, 2014, 112, 1849-1856.	1.8	41
128	The Generalization of Prior Uncertainty during Reaching. Journal of Neuroscience, 2014, 34, 11470-11484.	3.6	28
129	Serotonin Affects Movement Gain Control in the Spinal Cord. Journal of Neuroscience, 2014, 34, 12690-12700.	3.6	98
130	Hand, belt, pocket or bag: Practical activity tracking with mobile phones. Journal of Neuroscience Methods, 2014, 231, 22-30.	2.5	77
131	Spatial information in large-scale neural recordings. Frontiers in Computational Neuroscience, 2014, 8, 172.	2.1	7
132	Conceptualizing Cancer Drugs as Classifiers. PLoS ONE, 2014, 9, e106444.	2.5	1
133	Motion games improve balance control in stroke survivors: A preliminary study based on the principle of constraint-induced movement therapy. Displays, 2013, 34, 125-131.	3.7	26
134	Credit Assignment during Movement Reinforcement Learning. PLoS ONE, 2013, 8, e55352.	2.5	27
135	Wii Fit Balance Board Playing Improves Balance and Gait in Parkinson Disease. PM and R, 2013, 5, 769-777.	1.6	103
136	Real-Time Evaluation of a Noninvasive Neuroprosthetic Interface for Control of Reach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 674-683.	4.9	29
137	Statistical Analysis of Molecular Signal Recording. PLoS Computational Biology, 2013, 9, e1003145.	3.2	26
138	Physical principles for scalable neural recording. Frontiers in Computational Neuroscience, 2013, 7, 137.	2.1	215
139	Ceneralization of unconstrained reaching with hand-weight changes. Journal of Neurophysiology, 2013, 109, 137-146.	1.8	9
140	Monitoring Functional Capability of Individuals with Lower Limb Amputations Using Mobile Phones. PLoS ONE, 2013, 8, e65340.	2.5	24
141	The Database for Reaching Experiments and Models. PLoS ONE, 2013, 8, e78747.	2.5	15
142	An Examination of the Generalizability of Motor Costs. PLoS ONE, 2013, 8, e53759.	2.5	12
143	Functional Connectivity and Tuning Curves in Populations of Simultaneously Recorded Neurons. PLoS Computational Biology, 2012, 8, e1002775.	3.2	58
144	Real-time fusion of gaze and EMG for a reaching neuroprosthesis. , 2012, 2012, 739-42.		7

#	Article	IF	CITATIONS
145	Using Mobile Phones for Activity Recognition in Parkinson's Patients. Frontiers in Neurology, 2012, 3, 158.	2.4	97
146	Decoding with limited neural data: a mixture of time-warped trajectory models for directional reaches. Journal of Neural Engineering, 2012, 9, 036002.	3.5	22
147	Toward Perceiving Robots as Humans: Three Handshake Models Face the Turing-Like Handshake Test. IEEE Transactions on Haptics, 2012, 5, 196-207.	2.7	52
148	Differential Representations of Prior and Likelihood Uncertainty in the Human Brain. Current Biology, 2012, 22, 1641-1648.	3.9	139
149	Temporal Integration of Olfactory Perceptual Evidence in Human Orbitofrontal Cortex. Neuron, 2012, 75, 916-927.	8.1	78
150	Predicting scientific success. Nature, 2012, 489, 201-202.	27.8	209
151	Saccadic gain adaptation is predicted by the statistics of natural fluctuations in oculomotor function. Frontiers in Computational Neuroscience, 2012, 6, 96.	2.1	4
152	What Silly Postures Tell Us about the Brain. Frontiers in Neuroscience, 2012, 6, 154.	2.8	8
153	Fall Classification by Machine Learning Using Mobile Phones. PLoS ONE, 2012, 7, e36556.	2.5	159
154	Generalization of Stochastic Visuomotor Rotations. PLoS ONE, 2012, 7, e43016.	2.5	33
155	Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing. PLoS ONE, 2012, 7, e43876.	2.5	54
156	Discrete-time local dynamic programming. , 2011, , .		1
157	Bayesian approaches to modelling action selection. , 2011, , 120-143.		1
158	Trust and Reciprocity: Are Effort and Money Equivalent?. PLoS ONE, 2011, 6, e17113.	2.5	12
159	Statistical assessment of the stability of neural movement representations. Journal of Neurophysiology, 2011, 106, 764-774.	1.8	67
160	How advances in neural recording affect data analysis. Nature Neuroscience, 2011, 14, 139-142.	14.8	459
161	Bayesian models: the structure of the world, uncertainty, behavior, and the brain. Annals of the New York Academy of Sciences, 2011, 1224, 22-39.	3.8	156
162	Visual-haptic cue integration with spatial and temporal disparity during pointing movements. Experimental Brain Research, 2011, 210, 67-80.	1.5	6

#	Article	IF	CITATIONS
163	Determining posture from physiological tremor. Experimental Brain Research, 2011, 215, 247-255.	1.5	6
164	Bayesian approaches to sensory integration for motor control. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 419-428.	2.8	47
165	Dealing with noisy gaze information for a target-dependent neural decoder. , 2011, 2011, 5428-31.		4
166	Estimating the Relevance of World Disturbances to Explain Savings, Interference and Long-Term Motor Adaptation Effects. PLoS Computational Biology, 2011, 7, e1002210.	3.2	57
167	Of Toasters and Molecular Ticker Tapes. PLoS Computational Biology, 2011, 7, e1002291.	3.2	25
168	Sensory Cue Integration. , 2011, , .		117
169	Causal Inference in Sensorimotor Learning and Control. , 2011, , 30-45.		8
170	Measuring Generalization of Visuomotor Perturbations in Wrist Movements Using Mobile Phones. PLoS ONE, 2011, 6, e20290.	2.5	18
171	Hierarchical Bayesian Modeling and Markov Chain Monte Carlo Sampling for Tuning-Curve Analysis. Journal of Neurophysiology, 2010, 103, 591-602.	1.8	36
172	Looking for Synergies Between the Equilibrium Point Hypothesis and Internal Models. Motor Control, 2010, 14, e31-e34.	0.6	2
173	Uncertainty of feedback and state estimation determines the speed of motor adaptation. Frontiers in Computational Neuroscience, 2010, 4, 11.	2.1	154
174	Rewiring neural interactions by micro-stimulation. Frontiers in Systems Neuroscience, 2010, 4, .	2.5	76
175	On the Similarity of Functional Connectivity between Neurons Estimated across Timescales. PLoS ONE, 2010, 5, e9206.	2.5	14
176	Sensory Adaptation and Short Term Plasticity as Bayesian Correction for a Changing Brain. PLoS ONE, 2010, 5, e12436.	2.5	18
177	Learning Priors for Bayesian Computations in the Nervous System. PLoS ONE, 2010, 5, e12686.	2.5	119
178	The uncertainty associated with visual flow fields and their influence on postural sway: Weber's law suffices to explain the nonlinearity of vection. Journal of Vision, 2010, 10, 4-4.	0.3	26
179	The effect of blur adaptation on accommodative response and pupil size during reading. Journal of Vision, 2010, 10, 1-1.	0.3	28
180	The Nervous System Uses Nonspecific Motor Learning in Response to Random Perturbations of Varying Nature. Journal of Neurophysiology, 2010, 104, 3053-3063.	1.8	31

#	Article	IF	CITATIONS
181	Self versus Environment Motion in Postural Control. PLoS Computational Biology, 2010, 6, e1000680.	3.2	47
182	In Praise of "False―Models and Rich Data. Journal of Motor Behavior, 2010, 42, 343-349.	0.9	7
183	Statistics of Natural Movements Are Reflected in Motor Errors. Journal of Neurophysiology, 2009, 102, 1902-1910.	1.8	87
184	Bayesian Integration and Non-Linear Feedback Control in a Full-Body Motor Task. PLoS Computational Biology, 2009, 5, e1000629.	3.2	46
185	Bayesian Inference of Functional Connectivity and Network Structure From Spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17, 203-213.	4.9	87
186	Exploration and Exploitation During Sequential Search. Cognitive Science, 2009, 33, 530-541.	1.7	18
187	Bayesian Models of Motor Control. , 2009, , 127-133.		2
188	Relevance of Error: What Drives Motor Adaptation?. Journal of Neurophysiology, 2009, 101, 655-664.	1.8	353
189	The statistics of natural hand movements. Experimental Brain Research, 2008, 188, 223-236.	1.5	261
190	Estimating the sources of motor errors for adaptation and generalization. Nature Neuroscience, 2008, 11, 1454-1461.	14.8	287
191	⁢year>2008⁢/year> ⁢/publication_date> ⁢pages> <first_page>1359</first_page> <last_page>1359</last_page> <publisher_item> <item_number item_number_type='sequence-number'>4599404 </item_number </publisher_item>	3.2	18
192	Algdoi_data&gu &ludoi&gu10.1109/TASL2008.2004459&ludoi&gu of Freeninger of Articuliae values to a Inferring functional connections between neurons. Current Opinion in Neurobiology, 2008, 18, 582-588.	4.2	131
193	Bayesian Statistics (with Particular Focus on the Motor System). , 2008, , 355-359.		0
194	Decision Theory: What "Should" the Nervous System Do?. Science, 2007, 318, 606-610.	12.6	268
195	Dynamics of orientation tuning in cat V1 neurons depend on location within layers and orientation maps. Frontiers in Neuroscience, 2007, 1, 145-159.	2.8	31
196	The dynamics of memory as a consequence of optimal adaptation to a changing body. Nature Neuroscience, 2007, 10, 779-786.	14.8	383
197	Causal Inference in Multisensory Perception. PLoS ONE, 2007, 2, e943.	2.5	810
198	Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 2006, 10, 319-326.	7.8	724

#	Article	IF	CITATIONS
199	Unsupervised topic modelling for multi-party spoken discourse. , 2006, , .		71
200	Bayesian Statistics and Utility Functions in Sensorimotor Control. , 2006, , 299-319.		1
201	Probabilistic mechanisms in sensorimotor control. Novartis Foundation Symposium, 2006, 270, 191-8; discussion 198-202, 232-7.	1.1	2
202	The loss function of sensorimotor learning. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9839-9842.	7.1	155
203	Bayesian Integration in Force Estimation. Journal of Neurophysiology, 2004, 92, 3161-3165.	1.8	114
204	A Neuroeconomics Approach to Inferring Utility Functions in Sensorimotor Control. PLoS Biology, 2004, 2, e330.	5.6	51
205	Bayesian integration in sensorimotor learning. Nature, 2004, 427, 244-247.	27.8	1,688
206	Processing of complex stimuli and natural scenes in the visual cortex. Current Opinion in Neurobiology, 2004, 14, 468-473.	4.2	113
207	The world from a cat?s perspective ? statistics of natural videos. Biological Cybernetics, 2004, 90, 41-50.	1.3	138
208	How Are Complex Cell Properties Adapted to the Statistics of Natural Stimuli?. Journal of Neurophysiology, 2004, 91, 206-212.	1.8	120
209	On the Choice of a Sparse Prior. Reviews in the Neurosciences, 2003, 14, 53-62.	2.9	8
210	Learning Distinct and Complementary Feature Selectivities from Natural Colour Videos. Reviews in the Neurosciences, 2003, 14, 43-52.	2.9	4
211	Learning the Nonlinearity of Neurons from Natural Visual Stimuli. Neural Computation, 2003, 15, 1751-1759.	2.2	23
212	Sparse Spectrotemporal Coding of Sounds. Eurasip Journal on Advances in Signal Processing, 2003, 2003, 1.	1.7	45
213	Learning the invariance properties of complex cells from their responses to natural stimuli. European Journal of Neuroscience, 2002, 15, 475-486.	2.6	72
214	Learning Multiple Feature Representations from Natural Image Sequences. Lecture Notes in Computer Science, 2002, , 21-26.	1.3	3
215	Neurons with Two Sites of Synaptic Integration Learn Invariant Representations. Neural Computation, 2001, 13, 2823-2849.	2.2	15
216	Non-contact eye-tracking on cats. Journal of Neuroscience Methods, 2001, 110, 103-111.	2.5	16

#	Article	IF	CITATIONS
217	Supervised and unsupervised learning with two sites of synaptic integration. Journal of Computational Neuroscience, 2001, 11, 207-215.	1.0	64
218	Extracting Slow Subspaces from Natural Videos Leads to Complex Cells. Lecture Notes in Computer Science, 2001, , 1075-1080.	1.3	33
219	Learning with two sites of synaptic integration. Network: Computation in Neural Systems, 2000, 11, 25-39.	3.6	58
220	A learning rule for dynamic recruitment and decorrelation. Neural Networks, 2000, 13, 1-9.	5.9	22
221	A spike based learning rule for generation of invariant representations. Journal of Physiology (Paris), 2000, 94, 539-548.	2.1	5
222	Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. Journal of Computational Neuroscience, 2000, 8, 161-173.	1.0	106
223	Learning with two sites of synaptic integration. Network: Computation in Neural Systems, 2000, 11, 25-39.	3.6	10
224	How does the human brain deal with uncertainty?. Frontiers in Behavioral Neuroscience, 1970, , .	2.0	0
225	Probabilistic Mechanisms in Sensorimotor Control. Novartis Foundation Symposium, 0, , 191-202.	1.1	4
226	Regression Discontinuity Threshold Optimization. SSRN Electronic Journal, 0, , .	0.4	3
227	An analysis of functional connectivity across timescales. Frontiers in Systems Neuroscience, 0, 3, .	2.5	0
228	Short-term synaptic plasticity and sensory adaptation as Bayesian inference. Frontiers in Neuroscience, 0, 4, .	2.8	0
229	Does Parkinson's disease make subjects less Bayesian?. Frontiers in Neuroscience, 0, 6, .	2.8	0