Suvit Loprasert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1632812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and Characterization of a New Organic Hydroperoxide Resistance (<i>ohr</i>) Gene with a Novel Pattern of Oxidative Stress Regulation from <i>Xanthomonas campestris</i> pv. phaseoli. Journal of Bacteriology, 1998, 180, 2636-2643.	2.2	174
2	Catalase-peroxidase KatG of Burkholderia pseudomallei at 1.7Ã resolution. Journal of Molecular Biology, 2003, 327, 475-489.	4.2	126
3	Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology (United Kingdom), 2001, 147, 1775-1782.	1.8	97
4	Complex Regulation of the Organic Hydroperoxide Resistance Gene (ohr) from Xanthomonas Involves OhrR, a Novel Organic Peroxide-Inducible Negative Regulator, and Posttranscriptional Modifications. Journal of Bacteriology, 2001, 183, 4405-4412.	2.2	82
5	Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas — a review. Gene, 1996, 179, 33-37.	2.2	60
6	A Xanthomonas Alkyl Hydroperoxide Reductase Subunit C (ahpC) Mutant Showed an Altered Peroxide Stress Response and Complex Regulation of the Compensatory Response of Peroxide Detoxification Enzymes. Journal of Bacteriology, 2000, 182, 6845-6849.	2.2	59
7	<i>Bacillus subtilis</i> SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated βâ€amino acid. FEBS Letters, 2010, 584, 3209-3214.	2.8	57
8	Molecular and physiological analysis of an OxyR-regulated ahpC promoter in Xanthomonas campestris pv. phaseoli. Molecular Microbiology, 2000, 37, 1504-1514.	2.5	53
9	Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology (United Kingdom), 2006, 152, 3651-3659.	1.8	51
10	Two endocrine disrupting dibutyl phthalate degrading esterases and their compensatory gene expression in Sphingobium sp. SM42. International Biodeterioration and Biodegradation, 2015, 99, 45-54.	3.9	48
11	Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. Archives of Microbiology, 2003, 180, 498-502.	2.2	47
12	Construction and Physiological Analysis of a <i>Xanthomonas</i> Mutant To Examine the Role of the <i>oxyR</i> Gene in Oxidant-Induced Protection against Peroxide Killing. Journal of Bacteriology, 1998, 180, 3988-3991.	2.2	47
13	Characterization and mutagenesis of fur gene from Burkholderia pseudomallei. Gene, 2000, 254, 129-137.	2.2	38
14	Regulation of thekatG-dpsAoperon and the importance of KatG in survival ofBurkholderia pseudomalleiexposed to oxidative stress. FEBS Letters, 2003, 542, 17-21.	2.8	37
15	DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Archives of Microbiology, 2004, 182, 96-101.	2.2	35
16	Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor. Analytical Biochemistry, 2016, 493, 11-13.	2.4	32
17	The Burkholderia pseudomallei oxyR gene: expression analysis and mutant characterization. Gene, 2002, 296, 161-169.	2.2	27
18	Characterization of a ferric uptake regulator (fur) gene from Xanthomonas campestris pv. phaseoli with unusual primary structure, genome organization, and expression patterns. Gene, 1999, 239, 251-258.	2.2	23

SUVIT LOPRASERT

#	Article	IF	CITATIONS
19	Mutations in oxyR Resulting in Peroxide Resistance in Xanthomonas campestris. Journal of Bacteriology, 2000, 182, 3846-3849.	2.2	23
20	Gene Cloning and Characterization of a Novel Highly Organic Solvent Tolerant Lipase from Proteus sp. SW1 and its Application for Biodiesel Production. Molecular Biotechnology, 2013, 53, 55-62.	2.4	22
21	Burkholderia pseudomallei RpoS regulates OxyR and the katG-dpsA operon under conditions of oxidative stress. Microbiology and Immunology, 2010, 54, no-no.	1.4	19
22	Atypical oxidative stress regulation of a Xanthomonas oryzae pv. oryzae monofunctional catalase. Canadian Journal of Microbiology, 1995, 41, 541-547.	1.7	18
23	Generalized and mobilizable positive-selection cloning vectors. Gene, 1994, 143, 145-146.	2.2	16
24	Streptanoate, a new anticancer butanoate from Streptomyces sp. DC3. Journal of Antibiotics, 2016, 69, 124-127.	2.0	15
25	Overproduction and single-step purification of Bacillus stearothermophilus peroxidase in Escherichia coli. Applied Microbiology and Biotechnology, 1990, 32, 690-692.	3.6	14
26	The unique glutathione reductase from Xanthomonas campestris: Gene expression and enzyme characterization. Biochemical and Biophysical Research Communications, 2005, 331, 1324-1330.	2.1	12
27	Use of reverse transcription-polymerase chain reaction for cloning of coat protein-encoding genes of cymbidium mosaic virus. Gene, 1996, 179, 105-107.	2.2	11
28	Cloning of Toluene 4-Monooxygenase Genes and Application of Two-Phase System to the Production of the Anticancer Agent, Indirubin. Molecular Biotechnology, 2015, 57, 720-726.	2.4	11
29	Biodegradation of endocrine disrupting dibutyl phthalate by a bacterial consortium expressing Sphingobium sp. SM42 esterase. Process Biochemistry, 2016, 51, 1040-1045.	3.7	10
30	Transfer of plasmids pBC 16 and pC 194 into Bacillus thuringiensis subsp. israelensis. Journal of Invertebrate Pathology, 1986, 48, 325-334.	3.2	9
31	Efficient removal of toxic phthalate by immobilized serine-type aldehyde-tagged esterase G. Process Biochemistry, 2017, 63, 60-65.	3.7	8
32	Crystallization and preliminary X-ray analysis of the catalase–peroxidase KatG fromBurkholderia pseudomallei. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 2184-2186.	2.5	7
33	HpdR Is a Transcriptional Activator of <i>Sinorhizobium meliloti hpdA</i> , Which Encodes a Herbicide-Targeted 4-Hydroxyphenylpyruvate Dioxygenase. Journal of Bacteriology, 2007, 189, 3660-3664.	2.2	7
34	ChpR Is a Chlorpyrifos-Responsive Transcription Regulator in <i>Sinorhizobium meliloti</i> . Journal of Molecular Microbiology and Biotechnology, 2010, 18, 141-147.	1.0	7
35	Detection of 2,4-dichlorophenoxyacetic acid herbicide using a FGE-sulfatase based whole-cell Agrobacterium biosensor. Journal of Microbiological Methods, 2020, 175, 105997.	1.6	7
36	Identification of a repressor and an activator of azoreductase gene expression in Pseudomonas putida and Xanthomonas oryzae. Biochemical and Biophysical Research Communications, 2018, 502, 9-14.	2.1	6

SUVIT LOPRASERT

#	Article	IF	CITATIONS
37	FGEâ€sulfataseâ€based bacterial biosensor with single copy evolved sensing cassette for arsenic detection. Journal of Chemical Technology and Biotechnology, 2019, 95, 1173.	3.2	6
38	The hdhA Gene Encodes a Haloacid Dehalogenase that is Regulated by the LysR-Type Regulator, HdhR, in Sinorhizobium meliloti. Molecular Biotechnology, 2013, 54, 148-157.	2.4	4
39	A highly sensitive biosensor with a single-copy evolved sensing cassette for chlorpyrifos pesticide detection. Microbiology (United Kingdom), 2020, 166, 1019-1024.	1.8	4
40	Bacterial consortium expressing surface displayed, intra- and extracellular lipases and pseudopyronine B for the degradation of oil. International Journal of Environmental Science and Technology, 2016, 13, 2067-2078.	3.5	3
41	The esterase B from Sphingobium sp. SM42 has the new de-arenethiolase activity against cephalosporin antibiotics. Biochemical and Biophysical Research Communications, 2018, 506, 231-236.	2.1	3
42	Cefoperazone induces esterase B expression by EstR and esterase B enhances cefoperazone activity at the periplasm. International Journal of Medical Microbiology, 2020, 310, 151396.	3.6	2
43	Potential use of two aryl sulfotransferase cell-surface display systems to detoxify the endocrine disruptor bisphenol A. Biochemical and Biophysical Research Communications, 2020, 528, 691-697.	2.1	1