Pavel Anzenbacher Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1632394/publications.pdf

Version: 2024-02-01

71 papers 4,224 citations

37 h-index

94433

106344 65 g-index

77 all docs

77 docs citations

77 times ranked

4897 citing authors

#	Article	IF	CITATIONS
1	Detection of phosphates in water utilizing a Eu ³⁺ -mediated relay mechanism. New Journal of Chemistry, 2022, 46, 1839-1844.	2.8	2
2	Binaphthalene Boronic Acid Sensor for Saccharides and <scp>d</scp> â€Fructose Determination in Beverages. Analysis & Sensing, 2022, 2, .	2.0	1
3	Cross-reactive binding versus selective phosphate sensing in an imine macrocycle sensor. CheM, 2022, 8, 2228-2244.	11.7	5
4	Colorimetric Chemosensor Array for Determination of Halides. Chemosensors, 2021, 9, 39.	3.6	8
5	A Fluorescence Sensor Array Based on Zinc(II)â€Carboxyamidoquinolines: Toward Quantitative Detection of ATP**. Chemistry - A European Journal, 2021, 27, 11344-11351.	3.3	13
6	Effect of Bis-diazirine-Mediated Photo-Crosslinking on Polyvinylcarbazole and Solution-Processed Polymer LEDs. ACS Applied Electronic Materials, 2021, 3, 3365-3371.	4.3	9
7	Fluorescent Sensor Array for Quantitative Determination of Saccharides. ACS Sensors, 2021, 6, 4001-4008.	7.8	26
8	Bright Deep Blue TADF OLEDs: The Role of Triphenylphosphine Oxide in NPB/TPBi:PPh ₃ O Exciplex Emission. Advanced Optical Materials, 2020, 8, 0191282.	7.3	6
9	Diazirine-based photo-crosslinkers for defect free fabrication of solution processed organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 11988-11996.	5.5	15
10	High-throughput assay for determining enantiomeric excess of chiral diols, amino alcohols, and amines and for direct asymmetric reaction screening. Nature Protocols, 2020, 15, 2203-2229.	12.0	23
11	Exploiting fluorescent zinc(ii) and copper(ii) complexes for enantiomeric excess determination of hydroxycarboxylates. Chemical Communications, 2020, 56, 8964-8967.	4.1	1
12	Fluorimetric sensing of ATP in water by an imidazolium hydrazone based sensor. Chemical Communications, 2019, 55, 1770-1773.	4.1	46
13	An indicator displacement assay recognizes enantiomers of chiral carboxylates. Chemical Communications, 2019, 55, 7183-7186.	4.1	15
14	A dual chromophore sensor for the detection of amines, diols, hydroxy acids, and amino alcohols. Chemical Communications, 2019, 55, 4495-4498.	4.1	19
15	Anion Sensing by Fluorescent Expanded Calixpyrroles. Chemistry - A European Journal, 2018, 24, 4879-4884.	3.3	30
16	Ion-Mediated Ligand Exchange and Size Focusing of Semiconductor Nanocrystals in Ligand-Saturated Solutions. Journal of Physical Chemistry C, 2018, 122, 23623-23630.	3.1	6
17	Toward wearable sensors: optical sensor for detection of ammonium nitrate-based explosives, ANFO and ANNM. Chemical Communications, 2017, 53, 5196-5199.	4.1	25
18	Highâ€Throughput Assay for Enantiomeric Excess Determination in 1,2―and 1,3â€Diols and Direct Asymmetric Reaction Screening. Chemistry - A European Journal, 2017, 23, 10222-10229.	3.3	32

#	Article	IF	Citations
19	Synthesis, Structure, Photoluminescence, and Electroluminescence of Four Europium Complexes: Fabrication of Pure Red Organic Lightâ€Emitting Diodes from Europium Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 3644-3654.	2.0	22
20	Supramolecular Sensors for Opiates and Their Metabolites. Journal of the American Chemical Society, 2017, 139, 14954-14960.	13.7	76
21	Biguanides, anion receptors and sensors. Chemical Communications, 2017, 53, 10074-10077.	4.1	10
22	Toward Fluorescenceâ€Based Highâ€Throughput Screening for Enantiomeric Excess in Amines and Amino Acid Derivatives. Chemistry - A European Journal, 2016, 22, 10074-10080.	3.3	32
23	Room-temperature electrophosphorescence from an all-organic material. Journal of Luminescence, 2016, 180, 111-116.	3.1	10
24	Bowl-shaped Tr \tilde{A} ¶ger's bases and their recognition properties. Chemical Communications, 2016, 52, 10664-10667.	4.1	13
25	Detection and quantification of ATP in human blood serum. Organic and Biomolecular Chemistry, 2016, 14, 7459-7462.	2.8	16
26	Quantitative analysis of modeled ATP hydrolysis in water by a colorimetric sensor array. Chemical Communications, 2016, 52, 7838-7841.	4.1	40
27	Fluorescent zinc and copper complexes for detection of adrafinil in paper-based microfluidic devices. Chemical Communications, 2016, 52, 8279-8282.	4.1	38
28	A tri-serine tri-lactone scaffold for the quantification of citrate in urine. Chemical Communications, 2016, 52, 1827-1830.	4.1	13
29	Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor. Analytical Chemistry, 2016, 88, 1092-1095.	6.5	49
30	Determination of enantiomeric excess of carboxylates by fluorescent macrocyclic sensors. Chemical Science, 2016, 7, 2016-2022.	7.4	65
31	Determination of Enantiomeric Excess in Amine Derivatives with Molecular Selfâ€Assemblies. Angewandte Chemie, 2015, 127, 7236-7239.	2.0	29
32	Determination of Enantiomeric Excess in Amine Derivatives with Molecular Selfâ€Assemblies. Angewandte Chemie - International Edition, 2015, 54, 7130-7133.	13.8	96
33	Sensing of 2,4,6â€Trinitrotoluene (TNT) and 2,4â€Dinitrotoluene (2,4â€DNT) in the Solid State with Photoluminescent Ru ^{II} and Ir ^{III} Complexes. Chemistry - A European Journal, 2015, 21, 4056-4064.	3.3	33
34	Titelbild: Determination of Enantiomeric Excess in Amine Derivatives with Molecular Selfâ€Assemblies (Angew. Chem. 24/2015). Angewandte Chemie, 2015, 127, 7047-7047.	2.0	0
35	Sensing of enantiomeric excess in chiral carboxylic acids. Chemical Communications, 2015, 51, 5770-5773.	4.1	41
36	Small-Molecule Turn-On Fluorescent Probes for RDX. Journal of the American Chemical Society, 2015, 137, 7967-7969.	13.7	93

#	Article	IF	Citations
37	A mercury(<scp>ii</scp>) ion sensor device based on an organic field effect transistor with an extended-gate modified by dipicolylamine. Chemical Communications, 2015, 51, 17666-17668.	4.1	51
38	"Turn-on―fluorescent sensor array for basic amino acids in water. Chemical Communications, 2014, 50, 61-63.	4.1	122
39	Benzimidazole Derivatives: Synthesis, Physical Properties, and nâ€Type Semiconducting Properties. Chemistry - A European Journal, 2014, 20, 11835-11846.	3.3	50
40	Selective Anion Sensing by Chiral Macrocyclic Receptors with Multiple Hydrogen-Bonding Sites. Organic Letters, 2014, 16, 1302-1305.	4.6	48
41	First supramolecular sensors for phosphonate anions. Chemical Science, 2013, 4, 3617.	7.4	67
42	Multianalyte Sensing of Addictive Over-the-Counter (OTC) Drugs. Journal of the American Chemical Society, 2013, 135, 15238-15243.	13.7	116
43	Leveraging Material Properties in Fluorescence Anion Sensor Arrays: A General Approach. Chemistry - A European Journal, 2013, 19, 8497-8506.	3.3	60
44	Supramolecular Sensor for Cancer-Associated Nitrosamines. Journal of the American Chemical Society, 2012, 134, 20021-20024.	13.7	143
45	Iptyceneâ€Based Fluorescent Sensors for Nitroaromatics and TNT. Chemistry - A European Journal, 2012, 18, 12712-12718.	3.3	59
46	Cationic Iridium Complexes Coordinated with Coumarin Dyes – Sensitizers for Visibleâ€Lightâ€Driven Hydrogen Generation. European Journal of Inorganic Chemistry, 2012, 2012, 3975-3979.	2.0	45
47	Inorganic Solids of CdSe Nanocrystals Exhibiting High Emission Quantum Yield. Advanced Functional Materials, 2012, 22, 3714-3722.	14.9	36
48	Titelbild: Toward Wearable Sensors: Fluorescent Attoreactor Mats as Optically Encoded Cross-Reactive Sensor Arrays (Angew. Chem. 10/2012). Angewandte Chemie, 2012, 124, 2301-2301.	2.0	0
49	Toward Wearable Sensors: Fluorescent Attoreactor Mats as Optically Encoded Crossâ€Reactive Sensor Arrays. Angewandte Chemie - International Edition, 2012, 51, 2345-2348.	13.8	55
50	Cover Picture: Toward Wearable Sensors: Fluorescent Attoreactor Mats as Optically Encoded Crossâ∈Reactive Sensor Arrays (Angew. Chem. Int. Ed. 10/2012). Angewandte Chemie - International Edition, 2012, 51, 2255-2255.	13.8	9
51	Templated Synthesis of Glycoluril Hexamer and Monofunctionalized Cucurbit[6]uril Derivatives. Journal of the American Chemical Society, 2011, 133, 17966-17976.	13.7	159
52	Highâ€Efficiency Tris(8â€hydroxyquinoline)aluminum (Alq ₃) Complexes for Organic Whiteâ€Lightâ€Emitting Diodes and Solidâ€State Lighting. Chemistry - A European Journal, 2011, 17, 9076-9082.	3.3	88
53	4- vs. 5-phenylquinolinolate aluminum (III) isomers. Journal of Luminescence, 2010, 130, 145-152.	3.1	9
54	Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT:PSS using UV–ozone exposure. Organic Electronics, 2010, 11, 938-945.	2.6	87

#	Article	IF	Citations
55	Hydrophilic polymer matrices in optical array sensing. Current Opinion in Chemical Biology, 2010, 14, 693-704.	6.1	39
56	Pyrrole-Based Anion Sensors, Part I: Colorimetric Sensors. Topics in Heterocyclic Chemistry, 2010, , 205-235.	0.2	23
57	Analysis of non-covalent interactions between the nanoparticulate fillers and the matrix polymer as applied to shape memory performance. Journal of Materials Chemistry, 2010, 20, 3467.	6.7	36
58	A practical approach to optical cross-reactive sensor arrays. Chemical Society Reviews, 2010, 39, 3954.	38.1	318
59	Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors. Nature Chemistry, 2009, 1 , 80-86.	13.6	89
60	Phenylbenzimidazole-Based New Bipolar Host Materials for Efficient Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2009, 21, 2452-2458.	6.7	127
61	Harnessing a Ratiometric Fluorescence Output from a Sensor Array. Chemistry - A European Journal, 2008, 14, 8540-8546.	3.3	39
62	Rational Design of a Fluorescenceâ€Turnâ€On Sensor Array for Phosphates in Blood Serum. Angewandte Chemie - International Edition, 2007, 46, 7849-7852.	13.8	194
63	Cover Picture: Rational Design of a Fluorescence-Turn-On Sensor Array for Phosphates in Blood Serum (Angew. Chem. Int. Ed. 41/2007). Angewandte Chemie - International Edition, 2007, 46, 7715-7715.	13.8	0
64	True Blue:Â Blue-Emitting Aluminum(III) Quinolinolate Complexes. Inorganic Chemistry, 2006, 45, 9610-9612.	4.0	68
65	1,3-Indane-Based Chromogenic Calixpyrroles with Pushâ^'Pull Chromophores:  Synthesis and Anion Sensing. Organic Letters, 2006, 8, 359-362.	4.6	138
66	Benzothiadiazoles and Dipyrrolyl Quinoxalines with Extended Conjugated Chromophoresâ^'Fluorophores and Anion Sensors. Chemistry of Materials, 2005, 17, 5238-5241.	6.7	117
67	Simple Electrooptical Sensors for Inorganic Anions. Organic Letters, 2005, 7, 5027-5030.	4.6	131
68	Strategies toward improving the performance of fluorescence-based sensors for inorganic anions. Chemical Communications, 2004, , 1282-1283.	4.1	43
69	Dipyrrolyl quinoxalines with extended chromophores are efficient fluorimetric sensors for pyrophosphateElectronic supplementary information (ESI) available: experimental data. See http://www.rsc.org/suppdata/cc/b3/b301362f/. Chemical Communications, 2003, , 1394.	4.1	80
70	Luminescence Lifetime-Based Sensor for Cyanide and Related Anions. Journal of the American Chemical Society, 2002, 124, 6232-6233.	13.7	436
71	Direct Synthesis of Expanded Fluorinated Calix[n]pyrroles:  Decafluorocalix[5]pyrrole and Hexadecafluorocalix[8]pyrrole. Journal of the American Chemical Society, 2000, 122, 12061-12062.	13.7	104