Antonio Olmos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1632207/publications.pdf

Version: 2024-02-01

84 papers 2,853 citations

201674 27 h-index 50 g-index

86 all docs

86 docs citations

86 times ranked 2003 citing authors

#	Article	IF	CITATIONS
1	Innovative tools for detection of plant pathogenic viruses and bacteria. International Microbiology, 2003, 6, 233-243.	2.4	259
2	Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research, 2014, 188, 90-96.	2.2	196
3	Simultaneous detection and typing of plum pox potyvirus (PPV) isolates by heminested-PCR and PCR-ELISA. Journal of Virological Methods, 1997, 68, 127-137.	2.1	118
4	Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies. Viruses, 2018, 10, 436.	3.3	111
5	Real-time assay for quantitative detection of non-persistently transmitted Plum pox virus RNA targets in single aphids. Journal of Virological Methods, 2005, 128, 151-155.	2.1	110
6	Virus Detection by High-Throughput Sequencing of Small RNAs: Large-Scale Performance Testing of Sequence Analysis Strategies. Phytopathology, 2019, 109, 488-497.	2.2	106
7	Specific and Sensitive Detection of Phytophthora nicotianae By Simple and Nested-PCR. European Journal of Plant Pathology, 2002, 108, 197-207.	1.7	98
8	Single-step multiplex RT-PCR for simultaneous and colourimetric detection of six RNA viruses in olive trees. Journal of Virological Methods, 2001, 96, 33-41.	2.1	95
9	Print-capture PCR: a simple and highly sensitive method for the detection of plum pox virus (PPV) in plant tissues. Nucleic Acids Research, 1996, 24, 2192-2193.	14.5	92
10	Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses?. Current Issues in Molecular Biology, 2009, 11, 13-46.	2.4	91
11	New device and method for capture, reverse transcription and nested PCR in a single closed-tube. Nucleic Acids Research, 1999, 27, 1564-1565.	14.5	85
12	Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. European Journal of Plant Pathology, 2008, 120, 177-188.	1.7	81
13	Incidence and epidemiology of Citrus tristeza virus in the Valencian Community of Spain. Virus Research, 2000, 71, 85-95.	2.2	78
14	Multiplex Nested Reverse Transcription-Polymerase Chain Reaction in a Single Tube for Sensitive and Simultaneous Detection of Four RNA Viruses and Pseudomonas savastanoi pv. savastanoi in Olive Trees. Phytopathology, 2003, 93, 286-292.	2.2	76
15	Molecular characterization of divergent grapevine Pinot gris virus isolates and their detection in Slovak and Czech grapevines. Archives of Virology, 2014, 159, 2103-2107.	2.1	73
16	A novel grapevine badnavirus is associated with the Roditis leaf discoloration disease. Virus Research, 2015, 203, 47-55.	2.2	67
17	Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees. Virus Research, 2004, 100, 101-108.	2.2	64
18	Simultaneous and co-operational amplification (Co-PCR): a new concept for detection of plant viruses. Journal of Virological Methods, 2002, 106, 51-59.	2.1	62

#	Article	IF	Citations
19	Highâ€throughput sequencing technologies for plant pest diagnosis: challenges and opportunities. EPPO Bulletin, 2018, 48, 219-224.	0.8	62
20	Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses. Journal of Virological Methods, 2013, 188, 21-24.	2.1	50
21	Detection and molecular characterisation of Grapevine Syrah virus-1 isolates from Central Europe. Virus Genes, 2015, 51, 112-121.	1.6	41
22	Highly sensitive detection of Pseudomonas savastanoi pv. savastanoi in asymptomatic olive plants by nested-PCR in a single closed tube. Journal of Microbiological Methods, 2003, 52, 261-266.	1.6	37
23	Interference Between D and M Types of Plum pox virus in Japanese Plum Assessed by Specific Monoclonal Antibodies and Quantitative Real-Time Reverse Transcription-Polymerase Chain Reaction. Phytopathology, 2006, 96, 320-325.	2.2	36
24	High prevalence of viruses in table grape from Spain detected by real-time RT-PCR. European Journal of Plant Pathology, 2010, 128, 283-287.	1.7	34
25	Simultaneous detection of the seven main tomato-infecting RNA viruses by two multiplex reverse transcription polymerase chain reactions. Journal of Virological Methods, 2012, 186, 152-156.	2.1	33
26	Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR. International Microbiology, 2009, 12, 1-6.	2.4	30
27	Inter-laboratory evaluation of a duplex RT-PCR method using crude extracts for the simultaneous detection of Prune dwarf virus and Prunus necrotic ringspot virus. European Journal of Plant Pathology, 2008, 122, 539-547.	1.7	29
28	One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees. Journal of Virological Methods, 2015, 213, 12-17.	2.1	29
29	Detection and identification of Fabavirus species by one-step RT-PCR and multiplex RT-PCR. Journal of Virological Methods, 2014, 197, 77-82.	2.1	28
30	A novel hybridization approach for detection of citrus viroids. Molecular and Cellular Probes, 2009, 23, 95-102.	2.1	27
31	Genetic variation and evolutionary analysis of <i>Pepino mosaic virus</i> in Sicily: insights into the dispersion and epidemiology. Plant Pathology, 2017, 66, 368-375.	2.4	26
32	Isothermal amplification coupled with rapid flow-through hybridisation for sensitive diagnosis of Plum pox virus. Journal of Virological Methods, 2007, 139, 111-115.	2.1	24
33	Detection and characterization of Plum pox virus: molecular methods. EPPO Bulletin, 2006, 36, 262-266.	0.8	23
34	Start-up strategies for thermophilic anaerobic digestion of pig manure. Energy, 2014, 74, 389-395.	8.8	22
35	Simultaneous detection of three pome fruit tree viruses by one-step multiplex quantitative RT-PCR. PLoS ONE, 2017, 12, e0180877.	2.5	20
36	Rapid detection and discrimination of fabaviruses by flowâ€through hybridisation with genus―and speciesâ€specific riboprobes. Annals of Applied Biology, 2015, 167, 26-35.	2.5	19

#	Article	IF	CITATIONS
37	Grapevine virus T diversity as revealed by full-length genome sequences assembled from high-throughput sequence data. PLoS ONE, 2018, 13, e0206010.	2.5	19
38	A novel specific duplex real-time RT-PCR method for absolute quantitation of Grapevine Pinot gris virus in plant material and single mites. PLoS ONE, 2018, 13, e0197237.	2.5	19
39	High-Throughput Sequencing Reveals Further Diversity of Little Cherry Virus 1 with Implications for Diagnostics. Viruses, 2018, 10, 385.	3.3	19
40	Bioinformatic Tools and Genome Analysis of Citrus tristeza virus. Methods in Molecular Biology, 2019, 2015, 163-178.	0.9	19
41	Insights Into the Etiology of Polerovirus-Induced Pepper Yellows Disease. Phytopathology, 2017, 107, 1567-1576.	2.2	18
42	First Report of <i>Grapevine Pinot gris virus</i> in Grapevine in Spain. Plant Disease, 2017, 101, 1070.	1.4	17
43	Estimation of vector propensity for Lettuce mosaic virus based on viral detection in single aphids. Spanish Journal of Agricultural Research, 2007, 5, 376.	0.6	16
44	Biological and molecular characterization of a distinct <i>Citrus tristeza virus</i> isolate originating from a lemon tree in Greece. Plant Pathology, 2015, 64, 792-798.	2.4	15
45	Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of true-to-type virus-free plants. BMC Plant Biology, 2017, 17, 226.	3.6	15
46	Co-operational PCR coupled with dot blot hybridization for detection and 16SrX grouping of phytoplasmas. Plant Pathology, 2007, 56, 677-682.	2.4	13
47	Interlaboratory evaluation of two Reverseâ€transcriptase Polymeric Chain Reactionâ€based methods for detection of four fruit tree viruses. Annals of Applied Biology, 2009, 154, 133-141.	2.5	13
48	In vitro propagation of Vitis vinifera L. cv. â€~Monastrell'. Electronic Journal of Biotechnology, 2017, 27, 80-83.	2.2	13
49	First Report of Grapevine Red Globe Virus in Grapevine in Germany. Plant Disease, 2018, 102, 1675.	1.4	13
50	Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.). Spanish Journal of Agricultural Research, 2015, 13, e1005.	0.6	13
51	Evaluation of a real-time PCR and a loop-mediated isothermal amplification for detection of Xanthomonas arboricola pv. pruni in plant tissue samples. Journal of Microbiological Methods, 2015, 112, 36-39.	1.6	11
52	Modeling the Accuracy of Three Detection Methods of <i>Grapevine leafroll-associated virus 3</i> During the Dormant Period Using a Bayesian Approach. Phytopathology, 2016, 106, 510-518.	2.2	11
53	Grapevine virus T is relatively widespread in Slovakia and Czech Republic and genetically diverse. Virus Genes, 2018, 54, 737-741.	1.6	11
54	Development of a Real-Time RT-PCR for the Universal Detection of LChV1 and Study of the Seasonal Fluctuation of the Viral Titer in Sweet Cherry Cultivars. Plant Disease, 2018, 102, 899-904.	1.4	10

#	Article	IF	CITATIONS
55	First Report of <i>Little cherry virus 1</i> (LChV-1) in Sweet Cherry in Spain. Plant Disease, 2016, 100, 2340-2340.	1.4	10
56	A fast one-step reverse transcription and polymerase chain reaction (RT-PCR) amplification procedure providing highly specific complementary DNA from plant virus RNA. Journal of Virological Methods, 2000, 87, 25-28.	2.1	9
57	The complete genome sequence of Lamium mild mosaic virus, a member of the genus Fabavirus. Archives of Virology, 2013, 158, 2405-2408.	2.1	9
58	MOLECULAR METHODS FOR DETECTION AND QUANTITATION OF VIRUS IN APHIDS. , 2006, , 81-88.		8
59	First Report of <i>Carrot torrado virus 1</i> and <i>Carrot thin leaf virus</i> Naturally Infecting <i>Torilis arvensis</i> ssp. <i>arvensis</i> in Greece. Plant Disease, 2018, 102, 2049-2049.	1.4	8
60	Molecular Characterization of the Complete Coding Sequence of Olive Leaf Yellowing-Associated Virus. Plants, 2020, 9, 1272.	3.5	8
61	First Report of <i>Grapevine Syrah virus-1</i> in Grapevine in Spain. Plant Disease, 2017, 101, 1830-1830.	1.4	7
62	First Report of Avocado Sunblotch Viroid (ASBVd) Naturally Infecting Avocado (<i>Persea) Tj ETQq0 0 0 rgBT /C</i>	verlock 10) Tf 50 462 Td
63	First Report of Grapevine rupestris vein feathering virus in grapevine in Germany. Plant Disease, 2018, 102, 2053-2053.	1.4	7
64	First Detection and Molecular Characterization of Apple Stem Grooving Virus, Apple Chlorotic Leaf Spot Virus, and Apple Hammerhead Viroid in Loquat in Spain. Plants, 2021, 10, 2293.	3.5	7
65	Loquat (Eriobotrya japonica) Is a New Natural Host of Apple Stem Pitting Virus. Plants, 2020, 9, 1560.	3.5	6
66	Short communication. Molecular analysis of the genomic RNAs 1 and 2 of the first Arabis mosaic virus isolate detected in Spanish grapevines. Spanish Journal of Agricultural Research, 2013, 11, 199.	0.6	6
67	Characterization of Spanish Olive Virome by High Throughput Sequencing Opens New Insights and Uncertainties. Viruses, 2021, 13, 2233.	3.3	6
68	First Report of Grapevine virus T in Grapevine in Germany. Plant Disease, 2018, 102, 1675-1675.	1.4	5
69	First Report of Plum Bark Necrosis Stem Pitting-Associated Virus in Sweet Cherry in Spain. Plant Disease, 2020, 104, 602-602.	1.4	5
70	First Report of Grapevine Virus L in Grapevine in Tunisia. Plant Disease, 2020, 104, 3274-3274.	1.4	5
71	Identification of Pomegranate as a New Host of Passiflora Edulis Symptomless Virus (PeSV) and Analysis of PeSV Diversity. Agronomy, 2020, 10, 1821.	3.0	5
72	High-Throughput Sequencing Discloses the Cucumber Mosaic Virus (CMV) Diversity in Slovakia and Reveals New Hosts of CMV from the Papaveraceae Family. Plants, 2022, 11, 1665.	3.5	5

#	Article	IF	CITATIONS
73	Recovering Ancient Grapevine Varieties: From Genetic Variability to In Vitro Conservation, A Case Study. , 0, , .		4
74	Nested RT-PCR in a Single Closed Tube. , 2003, , 151-159.		4
7 5	Evaluation of conditions for <i>iin vitro</i> storage of commercial and minor grapevine (<i>Vitis) Tj ETQq1 1 0.784</i>	1314 rgBT 1.9	/gverlock 1
76	First report of grapevine rupestris vein feathering virus in grapevine in Iran. Journal of Plant Pathology, 2020, 102, 1313-1313.	1.2	3
77	Nested RT-PCR in a Single Closed Tube. , 2003, 226, 151-160.		2
78	Specific Real-Time PCR for the Detection and Absolute Quantitation of Grapevine Roditis Leaf Discoloration-Associated Virus, an EPPO Alert Pathogen. Plants, 2020, 9, 1151.	3.5	2
79	First Report of Grapevine Asteroid Mosaic Associated Virus in Grapevine in Spain. Plant Disease, 2021, 105, 517-517.	1.4	2
80	First report of Australian grapevine viroid in grapevine in Greece. Journal of Plant Pathology, 2021, 103, 1023-1024.	1.2	2
81	Susceptibility of different prunus rootstocks to natural infection of plum pox virus-Turkey (PPV-T) in Central Anatolia. Physiological and Molecular Plant Pathology, 2022, 119, 101837.	2.5	2
82	An Evidence-Based Approach to Plum Pox Virus Detection by DASI-ELISA and RT-PCR in Dormant Period. Virology: Research and Treatment, 2008, 1, VRT.S495.	3.5	1
83	First report of Passiflora edulis symptomless virus in pomegranate in Spain. Journal of Plant Pathology, 0, , 1.	1.2	1
84	First report of Cucumis melo endornavirus infecting Cucurbitaceae plants in Slovakia., 0,,.		1