Nanda Gopal Sahoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1632132/publications.pdf

Version: 2024-02-01

119 8,726 39 92 papers citations h-index g-index

120 120 120 11681 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Comprehensive Review on PCSK9 as Mechanistic Target Approach in Cancer Therapy. Mini-Reviews in Medicinal Chemistry, 2023, 23, 24-32.	2.4	3
2	Dual Drug Loaded Potassium-contained Graphene Oxide as a Nanocarrier in Cocktailed Drug Delivery for the Treatment of Human Breast Cancer. Current Drug Delivery, 2023, 20, 943-950.	1.6	2
3	Recent Advancements in Green Synthesis of Nanoparticles for Improvement of Bioactivities: A Review. Current Pharmaceutical Biotechnology, 2022, 23, 904-919.	1.6	7
4	Targeting mangiferin loaded N-succinyl chitosan-alginate grafted nanoparticles against atherosclerosis – A case study against diabetes mediated hyperlipidemia in rat. Food Chemistry, 2022, 370, 131376.	8.2	14
5	A waste to energy approach for the effective conversion of solid waste plastics into graphene nanosheets using different catalysts for high performance supercapacitors: a comparative study. Materials Advances, 2022, 3, 2146-2157.	5.4	24
6	Synergistic effect of avidin/biotin system with biofunctionalized graphene oxide based nanocarrier in targeted coâ€delivery of hydrophobic anticancer drug <scp>SN</scp> â€38. Journal of Vinyl and Additive Technology, 2022, 28, 474-486.	3.4	3
7	Polymer grafted magnetic graphene oxide as a potential nanocarrier for pH-responsive delivery of sparingly soluble quercetin against breast cancer cells. RSC Advances, 2022, 12, 2574-2588.	3.6	20
8	Green and cost-effective synthesis of 2D and 3D graphene-based nanomaterials from Drepanostachyum falcatum for bio-imaging and water purification applications. Chemical Engineering Journal Advances, 2022, 10, 100265.	5.2	24
9	Graphene nanosheets derived from waste plastic for cost-effective thermoelectric applications. Results in Materials, 2022, 13, 100260.	1.8	8
10	The effects of functionalized graphene oxide on the thermal and mechanical properties of liquid crystalline polymers. Soft Matter, 2022, 18, 3981-3992.	2.7	6
11	Mechanistic insights into carbo-catalyzed persulfate treatment for simultaneous degradation of cationic and anionic dye in multicomponent mixture using plastic waste–derived carbon. Journal of Hazardous Materials, 2022, 435, 128956.	12.4	21
12	Functionalized graphene oxide based nanocarrier for enhanced cytotoxicity of Juniperus squamata root essential oil against breast cancer cells. Journal of Drug Delivery Science and Technology, 2022, 72, 103370.	3.0	6
13	Synthesis of porous carbon from a PVC polymer and its application in supercapacitors. Materials Advances, 2022, 3, 4947-4953.	5.4	7
14	Pd-Fe2O3 decorated nitrogen-doped reduced graphene oxide/CNT nanohybridas electrocatalyst for proton exchange membrane fuel cell. Diamond and Related Materials, 2022, 126, 109115.	3.9	2
15	Bulk production of zinc doped reduced graphene oxide from tire waste for supercapacitor application: Computation and experimental analysis. Journal of Energy Storage, 2022, 53, 105098.	8.1	11
16	A facile synthesis of palladium nanoparticles decorated bismuth oxybromide nanostructures with exceptional photo-antimicrobial activities. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112640.	5.0	11
17	Development of biodegradable chitosan/ graphene oxide nanocomposite via spray drying method for drug loading and delivery application. Journal of Drug Delivery Science and Technology, 2022, 74, 103555.	3.0	10
18	Effect of graphene oxide on the mechanical and thermal properties of graphene oxide/hytrel nanocomposites. Journal of Thermoplastic Composite Materials, 2021, 34, 55-67.	4.2	24

#	Article	IF	Citations
19	Highly conducting polymer electrolyte-ionic liquid and porous carbon material for sandwich electric double layer capacitor. High Performance Polymers, 2021, 33, 469-475.	1.8	15
20	Waste plastics derived graphene nanosheets for supercapacitor application. Materials and Manufacturing Processes, 2021, 36, 171-177.	4.7	24
21	Solid waste-derived carbon nanomaterials for supercapacitor applications: a recent overview. Materials Advances, 2021, 2, 1454-1484.	5.4	47
22	Mass production of metal-doped graphene from the agriculture waste of <i>Quercus ilex</i> leaves for supercapacitors: inclusive DFT study. RSC Advances, 2021, 11, 10891-10901.	3.6	23
23	3D graphene nanosheets from plastic waste for highly efficient HTM free perovskite solar cells. Nanoscale Advances, 2021, 3, 4726-4738.	4.6	28
24	The room temperature synthesis of a CuO-Bi-BiOBr ternary Z-scheme photocatalyst for enhanced sunlight driven alcohol oxidation. Dalton Transactions, 2021, 50, 5001-5010.	3.3	19
25	Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors. Scientific Reports, 2021, 11, 3916.	3.3	76
26	Metal doped graphene oxide derived from Quercus ilex fruits for selective and visual detection of iron(III) in water: Experiment and theory. Sustainable Chemistry and Pharmacy, 2021, 21, 100436.	3.3	7
27	Waste plastic derived graphene sheets as nanofillers to enhance mechanical strength of concrete mixture: An inventive approach to deal with universal plastic waste. Cleaner Engineering and Technology, 2021, 5, 100275.	4.0	15
28	Recycling of Plastics into Advance Carbon Nanomaterials and Their Application in Energy Storage System. Composites Science and Technology, 2021, , 259-281.	0.6	1
29	Graphene oxide supported Pd-Fe nanohybrid as an efficient electrocatalyst for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 18704-18715.	7.1	10
30	Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. Journal of Materials Chemistry B, 2020, 8, 8116-8148.	5.8	71
31	Binder-free reduced graphene oxide as electrode material for efficient supercapacitor with aqueous and polymer electrolytes. High Performance Polymers, 2020, 32, 175-182.	1.8	25
32	lonic liquid (1-hexyl-3-methylimidazolium iodide)-incorporated biopolymer electrolyte for efficient supercapacitor. High Performance Polymers, 2020, 32, 220-225.	1.8	18
33	Disulfide exchange assisted self-healing epoxy/PDMS/graphene oxide nanocomposites. Nanoscale Advances, 2020, 2, 2726-2730.	4.6	35
34	Spray dryer processed graphene oxide/reduced graphene oxide for highâ€performance supercapacitor. International Journal of Applied Ceramic Technology, 2020, 17, 1899-1908.	2.1	4
35	Single Step Blending of PEDOT:PSS/SPGO Nanocomposite via Low Temperature Solid Phase Addition of Graphene Oxide for Effective Hole Transport Layer in Organic Solar Cells. Journal of Nanoscience and Nanotechnology, 2020, 20, 3888-3895.	0.9	8
36	A simple, eco-friendly and green approach to synthesis of blue photoluminescent potassium-doped graphene oxide from agriculture waste for bio-imaging applications. Materials Science and Engineering C, 2019, 104, 109970.	7.3	32

#	Article	IF	CITATIONS
37	Effect of Ag–Fe–Cu tri-metal loading in bismuth oxybromide to develop a novel nanocomposite for the sunlight driven photocatalytic oxidation of alcohols. Catalysis Science and Technology, 2019, 9, 3923-3932.	4.1	21
38	Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids and Surfaces B: Biointerfaces, 2019, 178, 452-459.	5.0	112
39	Bulk synthesis of graphene nanosheets from plastic waste: An invincible method of solid waste management for better tomorrow. Waste Management, 2019, 88, 48-55.	7.4	79
40	Elaborative Studies on Nonâ€Porous Carbon Material for Super Capacitor Application. Macromolecular Symposia, 2019, 388, 1900035.	0.7	8
41	Genome mining, in silico validation and phase selection of a novel aldo-keto reductase from Candida glabrata for biotransformation. Bioengineered, 2018, 9, 186-195.	3.2	3
42	Non-approximated series resistance evaluation by considering high ideality factor in organic solar cell. AlP Advances, 2018, 8, .	1.3	8
43	Dispersion and stability study of carbon nanotubes in pH and temperature responsive polymeric matrix: Experiment and dispersion-corrected DFT study. Materials Today Communications, 2018, 17, 187-193.	1.9	6
44	Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study. Colloids and Surfaces B: Biointerfaces, 2018, 169, 265-272.	5.0	58
45	Electrical, thermal, and dielectric studies of ionic liquid-based polymer electrolyte for photoelectrochemical device. High Performance Polymers, 2018, 30, 1002-1008.	1.8	23
46	A Novel, Quick Column Switching RP-HPLC Guided Metabolite Profiling of Albendazole-Praziquantel in Rat Plasma: Designing New Combination Dosage Regimen with Higher Therapeutic Window. Current Analytical Chemistry, 2018, 14, 604-614.	1.2	1
47	An experimental modeling of trinomial bioengineering- crp, rDNA, and transporter engineering within single cell factory for maximizing two-phase bioreduction. International Journal of Biological Macromolecules, 2017, 95, 818-825.	7.5	21
48	Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science, 2017, 67, 1-47.	24.7	491
49	Fabrication of \hat{l}^2 -cyclodextrin-mediated single bimolecular inclusion complex: characterization, molecular docking, in-vitro release and bioavailability studies for gefitinib and simvastatin conjugate. Journal of Pharmacy and Pharmacology, 2017, 69, 1304-1317.	2.4	9
50	Schottky diodes from 2D germanane. Applied Physics Letters, 2016, 109, .	3.3	19
51	Development and Characterization of Biocompatible Fullerene [C60]/Amphiphilic Block Copolymer Nanocomposite. Journal of Spectroscopy, 2015, 2015, 1-8.	1.3	4
52	Recent Trends of Polymer-Protein Conjugate Application in Biocatalysis: A Review. Polymer Reviews, 2015, 55, 163-198.	10.9	17
53	Fundamentals of Polymers and Polymer Composite. , 2015, , 3-42.		4
54	Nitrogen doped graphene nanosheet supported platinum nanoparticles as high performance electrochemical homocysteine biosensors. Journal of Materials Chemistry B, 2013, 1, 4655.	5.8	58

#	Article	IF	Citations
55	Particle size reduction of poorly water soluble artemisinin via antisolvent precipitation with a syringe pump. Powder Technology, 2013, 237, 468-476.	4.2	27
56	Modified supercritical antisolvent method with enhanced mass transfer to fabricate drug nanoparticles. Materials Science and Engineering C, 2013, 33, 2864-2870.	7.3	12
57	Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2013, 2, 377-386.	16.0	200
58	Nanocomposites for bone tissue regeneration. Nanomedicine, 2013, 8, 639-653.	3.3	90
59	A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Advances, 2013, 3, 11745.	3.6	142
60	Polymer Nanocomposite Hydrogels Exhibiting Both Dynamic Restructuring and Unusual Adhesive Properties. Langmuir, 2013, 29, 7087-7095.	3.5	20
61	Ternary dispersions to enhance solubility of poorly water soluble antioxidants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 111-121.	4.7	14
62	Fundamentals of Polymers and Polymer Composite. , 2013, , 1-33.		1
63	Current Advances in the Carbon Nanotube/Thermotropic Main-Chain Liquid Crystalline Polymer Nanocomposites and Their Blends. Polymers, 2012, 4, 889-912.	4.5	54
64	Long-term stability of quercetin nanocrystals prepared by different methods. Journal of Pharmacy and Pharmacology, 2012, 64, 1394-1402.	2.4	34
65	Tuning graphene surface chemistry to prepare graphene/polypyrrole supercapacitors with improved performance. Nano Energy, 2012, 1, 723-731.	16.0	78
66	Fabrication of quercetin nanocrystals: Comparison of different methods. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 113-121.	4.3	119
67	Carbon Nanotube-Based Materials for Fuel Cell Applications. Australian Journal of Chemistry, 2012, 65, 1213.	0.9	31
68	The application of graphene oxide in drug delivery. Expert Opinion on Drug Delivery, 2012, 9, 1365-1376.	5.0	200
69	Poly(vinyl alcohol) Nanocomposites Filled with Poly(vinyl alcohol)-Grafted Graphene Oxide. ACS Applied Materials & Diterfaces, 2012, 4, 2387-2394.	8.0	240
70	Grapheneâ€Based Materials for Energy Conversion. Advanced Materials, 2012, 24, 4203-4210.	21.0	303
71	Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 17-25.	3.6	26
72	Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technology, 2012, 223, 59-64.	4.2	92

#	Article	IF	CITATIONS
73	Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. Journal of Applied Polymer Science, 2012, 124, 1117-1127.	2.6	43
74	Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	140
75	Covalent functionalization of carbon nanotubes for ultimate interfacial adhesion to liquid crystalline polymer. Soft Matter, 2011, 7, 9505.	2.7	34
76	Artemisinin–Polyvinylpyrrolidone Composites Prepared by Evaporative Precipitation of Nanosuspension for Dissolution Enhancement. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 363-378.	3.5	7
77	Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chemical Communications, 2011, 47, 5235.	4.1	298
78	Dissolution Enhancement of Artemisinin with .BETACyclodextrin. Chemical and Pharmaceutical Bulletin, 2011, 59, 646-652.	1.3	26
79	Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids and Surfaces B: Biointerfaces, 2011, 88, 121-130.	5.0	101
80	Nitrophenyl functionalization of carbon nanotubes and its effect on properties of MWCNT/LCP composites. Macromolecular Research, 2011, 19, 660-667.	2.4	13
81	Strengthening of liquid crystalline polymer by functionalized carbon nanotubes through interfacial interaction and homogeneous dispersion. Polymers for Advanced Technologies, 2011, 22, 1452-1458.	3.2	12
82	Chitosanâ€Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small, 2011, 7, 1569-1578.	10.0	800
83	Preparation and Characterization of Quercetin Nanocrystals. Journal of Pharmaceutical Sciences, 2011, 100, 2379-2390.	3.3	115
84	Waterâ€Soluble Poly(<i>N</i> àâ€isopropylacrylamide)–Graphene Sheets Synthesized via Click Chemistry for Drug Delivery. Advanced Functional Materials, 2011, 21, 2754-2763.	14.9	426
85	Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier. Materials Science and Engineering C, 2011, 31, 391-399.	7.3	23
86	Preparation, characterization and dissolution behavior of artemisinin microparticles. Advanced Powder Technology, 2011, 22, 458-463.	4.1	6
87	Functionalized Graphene Oxide as Nanocarrier for Loading and Delivery of Ellagic Acid. Current Medicinal Chemistry, 2011, 18, 4503-4512.	2.4	115
88	Molecular Interaction and Properties of Poly(Ether Ether Ketone)/Liquid Crystalline Polymer Blends Incorporated with Functionalized Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 10408-10416.	0.9	16
89	The Role of Functionalized Carbon Nanotubes in a PA6/LCP Blend. Journal of Nanoscience and Nanotechnology, 2010, 10, 5242-5251.	0.9	17
90	Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension. Journal of Pharmacy and Pharmacology, 2010, 62, 413-421.	2.4	29

#	Article	IF	CITATIONS
91	Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 2010, 35, 837-867.	24.7	1,482
92	Fabrication of composite microparticles of artemisinin for dissolution enhancement. Powder Technology, 2010, 203, 277-287.	4.2	18
93	Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension. International Journal of Pharmaceutics, 2010, 383, 285-292.	5.2	97
94	Complementary effects of multiwalled carbon nanotubes and conductive carbon black on polyamide 6. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1203-1212.	2.1	54
95	Molecular Interactions in PA6, LCP and their Blend Incorporated with Functionalized Carbon Nanotubes. Key Engineering Materials, 2010, 447-448, 634-638.	0.4	3
96	An innovative approach for the fabrication of highly conductive nanocomposites with different carbon., 2010,, 9-13.		1
97	Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Materials Chemistry and Physics, 2009, 117, 313-320.	4.0	107
98	Specific Functionalization of Carbon Nanotubes for Advanced Polymer Nanocomposites. Advanced Functional Materials, 2009, 19, 3962-3971.	14.9	93
99	Solubility Enhancement of a Poorly Water-Soluble Anti-Malarial Drug: Experimental Design and Use of a Modified Multifluid Nozzle Pilot Spray Drier. Journal of Pharmaceutical Sciences, 2009, 98, 281-296.	3.3	27
100	Improvement of Properties of Polyetherimide/Liquid Crystalline Polymer Blends in the Presence of Functionalized Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 1928-1934.	0.9	8
101	Effect of Carbon Nanotubes and Processing Methods on the Properties of Carbon Nanotube/Polypropylene Composites. Journal of Nanoscience and Nanotechnology, 2009, 9, 5910-5919.	0.9	18
102	Micro/Nanoparticle Design and Fabrication for Pharmaceutical Drug Preparation and Delivery Applications. Current Drug Therapy, 2008, 3, 78-97.	0.3	21
103	Polypyrrole coated carbon nanotubes: Synthesis, characterization, and enhanced electrical properties. Synthetic Metals, 2007, 157, 374-379.	3.9	198
104	Electroactive Shape Memory Effect of Polyurethane Composites Filled with Carbon Nanotubes and Conducting Polymer. Materials and Manufacturing Processes, 2007, 22, 419-423.	4.7	104
105	Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Composites Science and Technology, 2007, 67, 1920-1929.	7.8	199
106	Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. European Polymer Journal, 2007, 43, 3750-3756.	5.4	180
107	Synthesis of Polyurethane Nanocomposites of Functionalized Carbon Nanotubes by in-situ Polymerization Methods. Journal of the Korean Physical Society, 2007, 51, 1.	0.7	33
108	Polyurethaneâ€Carbon Nanotube Nanocomposites Prepared by Inâ€Situ Polymerization with Electroactive Shape Memory. Journal of Macromolecular Science - Physics, 2006, 45, 441-451.	1.0	101

#	Article	IF	CITATIONS
109	Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites. Macromolecular Chemistry and Physics, 2006, 207, 1773-1780.	2.2	165
110	Polymeric Nanocomposites of Polyurethane Block Copolymers and Functionalized Multi-Walled Carbon Nanotubes as Crosslinkers. Macromolecular Rapid Communications, 2006, 27, 126-131.	3.9	133
111	Conducting Shape Memory Polyurethane-Polypyrrole Composites for an Electroactive Actuator. Macromolecular Materials and Engineering, 2005, 290, 1049-1055.	3.6	103
112	Self-reinforcing elastomer composites based on ethylene-propylene-diene monomer rubber and liquid-crystalline polymer. Journal of Applied Polymer Science, 2004, 93, 711-718.	2.6	14
113	Structure -properties relations of polypropylene/ liquid crystalline polymer blends. Macromolecular Research, 2003, 11, 224-230.	2.4	8
114	Nanofiller as crosslinker for halogen-containing elastomers. Macromolecular Research, 2003, 11, 506-510.	2.4	5
115	Blends of low-density polyethylene and liquid crystalline polymer. Polymer Composites, 2003, 24, 716-722.	4.6	2
116	Effect of ethylene/propylene ratio on reinforcing characteristics of liquid crystalline polymer (LCP) in EPDM-LCP composites. Plastics, Rubber and Composites, 2002, 31, 443-448.	2.0	5
117	Structural characterization of PBT–LCP blends. Materials Letters, 2002, 56, 194-199.	2.6	14
118	Nanofiller as vulcanizing aid for styrene-butadiene elastomer. Macromolecular Research, 2002, 10, 369-372.	2.4	23
119	Theranostics Application of Graphene-Based Materials in Cancer Imaging, Targeting and Treatment. , 0, , .		3