Najam Ul Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1631971/publications.pdf Version: 2024-02-01

NAIAM III HASSAN

#	Article	IF	CITATIONS
1	Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window. Scientific Reports, 2016, 6, 23386.	3.3	55
2	Synthesis, characterization and biological studies of copper oxide nanostructures. Materials Research Express, 2018, 5, 045006.	1.6	39
3	Realisation of magnetostructural coupling and a large magnetocaloric effect in the MnCoGe 1+x system. Journal of Magnetism and Magnetic Materials, 2017, 439, 120-125.	2.3	29
4	Structural, optical, and electrical characteristics of AlN:Ho thin films irradiated with 700 keV protons. Applied Surface Science, 2015, 357, 179-183.	6.1	24
5	Structural and magneto-transport properties of Mn1+Co1â^'Sn (x = 0.0–1.0) alloys. Journal of Magnetism and Magnetic Materials, 2018, 465, 360-364.	2.3	11
6	Multi-heterostructured spin-valve junction of vertical FLG/MoSe2/FLG. APL Materials, 2020, 8, .	5.1	11
7	INFLUENCE OF ION BEAM IRRADIATION ON STRUCTURAL, MAGNETIC AND ELECTRICAL CHARACTERISTICS OF Ho-DOPED AIN THIN FILMS. Surface Review and Letters, 2017, 24, 1750021.	1.1	10
8	Hydrothermal Synthesis of Binder-Free Metallic NiCo2O4 Nano-Needles Supported on Carbon Cloth as an Advanced Electrode for Supercapacitor Applications. Materials, 2022, 15, 4499.	2.9	9
9	Magnetostructural Coupling and Giant Magnetocaloric Effect in Off-Stoichiometric MnCoGe Alloys. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3809-3815.	1.8	8
10	Magnetostructural transformation and magnetocaloric effect in Mn _{48â^' <i>x</i>} V _{<i>x</i>} Ni ₄₂ Sn ₁₀ ferromagnetic shape memory alloys. Chinese Physics B, 2018, 27, 037504.	1.4	7
11	Mechanical Response and Failure Evolution of 304L Stainless Steel under the Combined Action of Mechanical Loading and Laser Heating. Metals, 2018, 8, 620.	2.3	6
12	MORPHOLOGICAL CHANGE IN Cu-DOPED ZnO FROM ROD-LIKE TO FLOWERS-LIKE NANOSTRUCTURES: A VITAL ROLE FOR THE OPTICAL BAND GAP TUNING. Surface Review and Letters, 2017, 24, 1850001.	1.1	5
13	Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni 48â^' x Co 2 Mn 38+ x Sn 12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory a. Chinese Physics B, 2017, 26, 097501.	1.4	5
14	Tunable Martensitic Transformation and Magnetic Properties of Sm-Doped NiMnSn Ferromagnetic Shape Memory Alloys. Crystals, 2021, 11, 1115.	2.2	5
15	Effect of Ni-Mn ratio on structural, martensitic and magnetic properties of Ni-Mn-Co-Ti ferromagnetic shape memory alloys. Materials Research Express, 2018, 5, 086102.	1.6	4
16	Realization of Magnetostructural Transition and Magnetocaloric Properties of Ni–Mn–Mo–Sn Heusler Alloys. Journal of Superconductivity and Novel Magnetism, 2019, 32, 659-665.	1.8	3
17	Modified electrical and microwave absorption properties of silver nanowires grown on graphene nanoplatelets. Materials Research Express, 2019, 6, 1250f8.	1.6	3
18	Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich \${mathrm{Mn}}_{50}{mathrm{Ni}}_{40}{mathrm{Sn}}_{10-x}{mathrm{Sb}}_{x}(x=1,2,3,mathrm{and}4)\$ alloys. Chinese Physics B, 2017, 26, 017501.	1.4	2

#	Article	IF	CITATIONS
19	Magnetostructural transformation and magnetocaloric effect in Ni42Mn47.5Sn10.5and Ni41.5Mn47.5Sn10.5Zn0.5ferromagnetic shape memory alloys. Materials Research Express, 2018, 5, 026108.	1.6	1
20	Mechanical behavior and fracture characteristics of simultaneously tensile loaded and laser heated Ti6Al4V alloy. Materials Research Express, 2019, 6, 036506.	1.6	1
21	SPUTTERING OF GOLD AND COPPER SURFACES UNDER LOW ENERGY CESIUM IONS. Surface Review and Letters, 2022, 29, .	1.1	0