John E Opfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1631967/publications.pdf

Version: 2024-02-01

279798 223800 3,165 50 23 46 h-index citations g-index papers 52 52 52 1721 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Development of Numerical Estimation. Psychological Science, 2003, 14, 237-250.	3.3	900
2	Representational change and children's numerical estimation. Cognitive Psychology, 2007, 55, 169-195.	2.2	236
3	Revisiting preschoolers' living things concept: A microgenetic analysis of conceptual change in basic biology. Cognitive Psychology, 2004, 49, 301-332.	2.2	184
4	The Logarithmicâ€Toâ€Linear Shift: One Learning Sequence, Many Tasks, Many Time Scales. Mind, Brain, and Education, 2009, 3, 143-150.	1.9	142
5	Cognitive foundations for science assessment design: Knowing what students know about evolution. Journal of Research in Science Teaching, 2012, 49, 744-777.	3.3	127
6	How 15 Hundred Is Like 15 Cherries: Effect of Progressive Alignment on Representational Changes in Numerical Cognition. Child Development, 2010, 81, 1768-1786.	3.0	126
7	Identifying living and sentient kinds from dynamic information: the case of goal-directed versus aimless autonomous movement in conceptual change. Cognition, 2002, 86, 97-122.	2.2	122
8	Reasoning About Natural Selection: Diagnosing Contextual Competency Using the ACORNS Instrument. American Biology Teacher, 2012, 74, 92-98.	0.2	122
9	Early development of spatialâ€numeric associations: evidence from spatial and quantitative performance of preschoolers. Developmental Science, 2010, 13, 761-771.	2.4	121
10	Children Are Not Like Older Adults: A Diffusion Model Analysis of Developmental Changes in Speeded Responses. Child Development, 2012, 83, 367-381.	3.0	92
11	Development of Spatial-Numerical Associations. Current Directions in Psychological Science, 2014, 23, 439-445.	5.3	88
12	Costs and benefits of representational change: Effects of context on age and sex differences in symbolic magnitude estimation. Journal of Experimental Child Psychology, 2008, 101, 20-51.	1.4	78
13	Cognitive Constraints on How Economic Rewards Affect Cooperation. Psychological Science, 2009, 20, 11-16.	3.3	73
14	The Trouble With Transfer: Insights From Microgenetic Changes in the Representation of Numerical Magnitude. Child Development, 2008, 79, 788-804.	3.0	72
15	The powers of noise-fitting: reply to Barth and Paladino. Developmental Science, 2011, 14, 1194-1204.	2.4	63
16	Children's and Adults' Models for Predicting Teleological Action: The Development of a Biology-Based Model. Child Development, 2001, 72, 1367-1381.	3.0	57
17	How Numbers Bias Preschoolers' Spatial Search. Journal of Cross-Cultural Psychology, 2011, 42, 682-695.	1.6	55
18	What makes relational reasoning smart? Revisiting the perceptualâ€toâ€relational shift in the development of generalization. Developmental Science, 2009, 12, 114-122.	2.4	53

#	Article	IF	Citations
19	Free versus anchored numerical estimation: A unified approach. Cognition, 2016, 149, 11-17.	2.2	51
20	Causal relations drive young children's induction, naming, and categorization. Cognition, 2007, 105, 206-217.	2.2	44
21	Number sense and mathematics: Which, when and how?. Developmental Psychology, 2017, 53, 1924-1939.	1.6	40
22	Representational change and magnitude estimation: Why young children can make more accurate salary comparisons than adults. Cognition, 2008, 108, 843-849.	2.2	36
23	A unified framework for bounded and unbounded numerical estimation Developmental Psychology, 2017, 53, 1088-1097.	1.6	34
24	Development of the Animate–Inanimate Distinction. , 0, , 151-166.		29
25	Using a Constructed-Response Instrument to Explore the Effects of Item Position and Item Features on the Assessment of Students' Written Scientific Explanations. Research in Science Education, 2015, 45, 527-553.	2.3	23
26	Learning without representational change: development of numerical estimation in individuals with Williams syndrome. Developmental Science, 2012, 15, 863-875.	2.4	20
27	The Value of Numbers in Economic Rewards. Psychological Science, 2014, 25, 1534-1545.	3.3	16
28	A field guide for teaching evolution in the social sciences. Evolution and Human Behavior, 2018, 39, 257-268.	2.2	16
29	Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers. Frontiers in Psychology, 2016, 7, 24.	2.1	14
30	Left posterior prefrontal regions support domainâ€general executive processes needed for both reading and math. Journal of Neuropsychology, 2020, 14, 467-495.	1.4	14
31	Dynamics and development in number-to-space mapping. Cognitive Psychology, 2018, 107, 44-66.	2.2	13
32	Characterizing and decomposing the neural correlates of individual differences in reading ability among adolescents with task-based fMRI. Developmental Cognitive Neuroscience, 2019, 37, 100647.	4.0	11
33	Psychophysics of Numerical Representation. Zeitschrift Fur Psychologie / Journal of Psychology, 2011, 219, 58-63.	1.0	9
34	Nuclear IHC enumeration: A digital phantom to evaluate the performance of automated algorithms in digital pathology. PLoS ONE, 2018, 13, e0196547.	2.5	7
35	The nature of the association between number line and mathematical performance: An international twin study. British Journal of Educational Psychology, 2019, 89, 787-803.	2.9	6
36	Compression is evident in children's unbounded and bounded numerical estimation: Reply to Cohen and Ray (2020) Developmental Psychology, 2020, 56, 853-860.	1.6	5

#	Article	IF	Citations
37	Analogy and conceptual change in childhood. Behavioral and Brain Sciences, 2008, 31, 723-723.	0.7	3
38	Affective constraints on acquisition of musical concepts: Children's and adults' development of the major–minor distinction. Psychology of Music, 2014, 42, 3-28.	1.6	3
39	Linear Spatial–Numeric Associations Aid Memory for Single Numbers. Frontiers in Psychology, 2019, 10, 146.	2.1	2
40	Development of Fraction Understanding. , 2019, , 148-182.		2
41	Cognitive mediators of US—China differences in early symbolic arithmetic. PLoS ONE, 2021, 16, e0255283.	2.5	2
42	Individual differences in addition strategy choice: A psychometric evaluation Journal of Educational Psychology, 2019, 111, 414-433.	2.9	2
43	A number-line task with a Bayesian active learning algorithm provides insights into the development of non-symbolic number estimation. Psychonomic Bulletin and Review, 2021, , 1.	2.8	2
44	From integers to fractions: The role of analogy in developing a coherent understanding of proportional magnitude Developmental Psychology, 2022, 58, 1912-1930.	1.6	2
45	On the design and function of rational arguments. Behavioral and Brain Sciences, 2011, 34, 85-86.	0.7	1
46	How not to develop a sense of number. Behavioral and Brain Sciences, 2017, 40, e184.	0.7	1
47	How Does the "Learning Gap―Open? A Cognitive Theory of Nation Effects on Mathematics Proficiency. , 2018, , 99-130.		1
48	Unwarranted philosophical assumptions in research on ANS. Behavioral and Brain Sciences, 2021, 44, e200.	0.7	1
49	Dynamics Versus Development in Numerosity Estimation: A Computational Model Accurately Predicts a Developmental Reversal. Cognitive Science, 2021, 45, e13049.	1.7	0
50	Trouble with Transfer: Insights from the Study of Learning. , 2012, , 3347-3350.		O