John E Dueber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1631198/publications.pdf

Version: 2024-02-01

147801 265206 6,889 41 31 h-index citations papers

42 g-index 50 50 50 7389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In vivo hypermutation and continuous evolution. Nature Reviews Methods Primers, 2022, 2, .	21.2	39
2	Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nature Chemical Biology, 2021, 17, 96-103.	8.0	75
3	<i>O</i> -/ <i>N</i> -/ <i>S</i> -Specificity in Glycosyltransferase Catalysis: From Mechanistic Understanding to Engineering. ACS Catalysis, 2021, 11, 1810-1815.	11.2	42
4	Exploration of Acetylation as a Base-Labile Protecting Group in <i>Escherichia coli</i> for an Indigo Precursor. ACS Synthetic Biology, 2020, 9, 2775-2783.	3.8	4
5	Targeted Diversification in the <i>S.Âcerevisiae</i> Genome with CRISPR-Guided DNA Polymerase I. ACS Synthetic Biology, 2020, 9, 1911-1916.	3.8	33
6	A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Nature Communications, 2020, 11, 3337.	12.8	101
7	Modular and tunable biological feedback control using a de novo protein switch. Nature, 2019, 572, 265-269.	27.8	96
8	De novo design of bioactive protein switches. Nature, 2019, 572, 205-210.	27.8	190
9	Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production. Scientific Reports, 2019, 9, 5815.	3.3	25
10	Genomewide and Enzymatic Analysis Reveals Efficient $\langle scp \rangle d \langle scp \rangle$ -Galacturonic Acid Metabolism in the Basidiomycete Yeast Rhodosporidium toruloides. MSystems, 2019, 4, .	3.8	20
11	Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 45, 180-188.	7.0	75
12	Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nature Chemical Biology, 2018, 14, 256-261.	8.0	143
13	Engineering Saccharomyces cerevisiae for co-utilization of d-galacturonic acid and d-glucose from citrus peel waste. Nature Communications, 2018, 9, 5059.	12.8	65
14	CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature, 2018, 560, 248-252.	27.8	231
15	Iterative optimization of xylose catabolism in <i>Saccharomyces cerevisiae</i> using combinatorial expression tuning. Biotechnology and Bioengineering, 2017, 114, 1301-1309.	3.3	12
16	Application of a Palladiumâ€Catalyzed Câ^'H Functionalization/Indolization Method to Syntheses of <i>ci>cis</i> å€Trikentrinâ€A and Herbindoleâ€B. Angewandte Chemie - International Edition, 2016, 55, 11824-11	1 828 .	40
17	Application of a Palladiumâ€Catalyzed Câ^'H Functionalization/Indolization Method to Syntheses of cis â€₹rikentrinâ€A and Herbindoleâ€B. Angewandte Chemie, 2016, 128, 12003-12007.	2.0	10
18	Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nature Communications, 2016, 7, 11152.	12.8	128

#	Article	IF	Citations
19	Microbial Factories for the Production of Benzylisoquinoline Alkaloids. Trends in Biotechnology, 2016, 34, 228-241.	9.3	67
20	Avoidance of Truncated Proteins from Unintended Ribosome Binding Sites within Heterologous Protein Coding Sequences. ACS Synthetic Biology, 2015, 4, 249-257.	3.8	30
21	A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy. ACS Synthetic Biology, 2015, 4, 1205-1216.	3.8	17
22	A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synthetic Biology, 2015, 4, 975-986.	3.8	708
23	An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11, 465-471.	8.0	309
24	Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds. Cell, 2015, 160, 339-350.	28.9	809
25	Design and Implementation of a Biomolecular Concentration Tracker. ACS Synthetic Biology, 2015, 4, 150-161.	3.8	80
26	Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnology for Biofuels, 2014, 7, 20.	6.2	54
27	Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 25, 20-29.	7.0	79
28	Cell-free protein synthesis: Search for the happy middle. Biotechnology Journal, 2014, 9, 593-594.	3.5	2
29	Selection of chromosomal DNA libraries using a multiplex CRISPR system. ELife, 2014, 3, .	6.0	314
30	Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41, 10668-10678.	14.5	186
31	DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Research, 2012, 40, 1879-1889.	14.5	241
32	Engineering robust control of two-component system phosphotransfer using modular scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18090-18095.	7.1	79
33	Spatial organization of enzymes for metabolic engineering. Metabolic Engineering, 2012, 14, 242-251.	7.0	217
34	Metabolic Pathway Flux Enhancement by Synthetic Protein Scaffolding. Methods in Enzymology, 2011, 497, 447-468.	1.0	33
35	Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metabolic Engineering, 2010, 12, 298-305.	7.0	258
36	BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 2010, 4, 1.	4.7	348

#	Article	IF	CITATIONS
37	Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 2009, 27, 753-759.	17. 5	1,071
38	The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency. Nature, 2008, 454, 1005-1008.	27.8	105
39	Engineering synthetic signaling proteins with ultrasensitive input/output control. Nature Biotechnology, 2007, 25, 660-662.	17.5	126
40	Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Current Opinion in Structural Biology, 2004, 14, 690-699.	5.7	127
41	Reprogramming Control of an Allosteric Signaling Switch Through Modular Recombination. Science, 2003, 301, 1904-1908.	12.6	292