Marie J Estcourt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630641/publications.pdf

Version: 2024-02-01

	840776		888059	
18	984	11	17	
papers	citations	h-index	g-index	
18	18	18	1463	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Interferon-resistant Human Melanoma Cells Are Deficient in ISGF3 Components, STAT1, STAT2, and p48-ISGF3 \hat{I}^3 . Journal of Biological Chemistry, 1997, 272, 28779-28785.	3.4	215
2	Innate immunity defines the capacity of antiviral T cells to limit persistent infection. Journal of Experimental Medicine, 2010, 207, 1333-1343.	8.5	190
3	TRAIL+ NK Cells Control CD4+ T Cell Responses during Chronic Viral Infection to Limit Autoimmunity. Immunity, 2014, 41, 646-656.	14.3	158
4	Prime–boost immunization generates a high frequency, high-avidity CD8+ cytotoxic T lymphocyte population. International Immunology, 2002, 14, 31-37.	4.0	122
5	Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. European Journal of Immunology, 2005, 35, 2532-2540.	2.9	54
6	Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates. Gene Therapy, 2012, 19, 999-1009.	4.5	46
7	rAAV.sFlt-1 Gene Therapy Achieves Lasting Reversal of Retinal Neovascularization in the Absence of a Strong Immune Response to the Viral Vector., 2009, 50, 4279.		43
8	DNA vaccines against human immunodeficiency virus type 1. Immunological Reviews, 2004, 199, 144-155.	6.0	39
9	Cytokine responses in virus infections: effects on pathogenesis, recovery and persistence. Current Opinion in Microbiology, 1998, 1, 411-418.	5.1	30
10	Induction of Human Immunodeficiency Virus Type 1-Specific T Cells by a Bluetongue Virus Tubule-Vectored Vaccine Prime-Recombinant Modified Virus Ankara Boost Regimen. Journal of Virology, 2005, 79, 14822-14833.	3.4	22
11	Whole-Cell Pertussis Vaccination and Decreased Risk of IgE-Mediated Food Allergy: A Nested Case-Control Study. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2004-2014.	3.8	20
12	CpG pretreatment enhances antiviral T-cell immunity against cytomegalovirus. Blood, 2013, 122, 55-60.	1.4	18
13	Retrospective Case-Control Study of 2017 G2P[4] Rotavirus Epidemic in Rural and Remote Australia. Pathogens, 2020, 9, 790.	2.8	10
14	Altered primary CD8+ Tâ€,,cell response to a modified virus Ankara(MVA)-vectored vaccine in the absence of CD4+ Tâ€,,cell help. European Journal of Immunology, 2005, 35, 3460-3467.	2.9	8
15	Protocol for Pertussis Immunisation and Food Allergy (PIFA): a case–control study of the association between pertussis vaccination in infancy and the risk of IgE-mediated food allergy among Australian children. BMJ Open, 2018, 8, e020232.	1.9	3
16	Wholeâ€eell pertussis vaccine in early infancy for the prevention of allergy in children. The Cochrane Library, 2021, 9, CD013682.	2.8	2
17	OPTIMUM study protocol: an adaptive randomised controlled trial of a mixed whole-cell/acellular pertussis vaccine schedule. BMJ Open, 2020, 10, e042838.	1.9	2
18	Statistical analysis plan for the OPTIMUM study: optimising immunisation using mixed schedules, an adaptive randomised controlled trial of a mixed whole-cell/acellular pertussis vaccine schedule. Trials, 2022, 23, 121.	1.6	2