Diana C J Spierings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630575/publications.pdf

Version: 2024-02-01

43 papers

3,010 citations

257450 24 h-index 265206 42 g-index

52 all docs

52 docs citations

times ranked

52

4559 citing authors

#	Article	IF	CITATIONS
1	Leukapheresis increases circulating tumour cell yield in non-small cell lung cancer, counts related to tumour response and survival. British Journal of Cancer, 2022, 126, 409-418.	6.4	5
2	C/EBPÎ 2 isoform-specific regulation of migration and invasion in triple-negative breast cancer cells. Npj Breast Cancer, 2022, 8, 11.	5.2	9
3	Construction of Strand-seq libraries in open nanoliter arrays. Cell Reports Methods, 2022, 2, 100150.	2.9	10
4	Genetic instability from a single S phase after whole-genome duplication. Nature, 2022, 604, 146-151.	27.8	54
5	Expression of CD39 Identifies Activated Intratumoral CD8+ T Cells in Mismatch Repair Deficient Endometrial Cancer. Cancers, 2022, 14, 1924.	3.7	5
6	Abstract 6217: TP53 loss with whole genome doubling mediates heterogeneous intra-patient therapy response in EGFR-driven lung adenocarcinoma: A TRACERx study. Cancer Research, 2022, 82, 6217-6217.	0.9	0
7	cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature, 2022, 607, 366-373.	27.8	132
8	Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature, 2021, 590, 486-491.	27.8	135
9	InvertypeR: Bayesian inversion genotyping with Strand-seq data. BMC Genomics, 2021, 22, 582.	2.8	3
10	Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Developmental Cell, 2021, 56, 2440-2454.e6.	7.0	87
11	Deposition Bias of Chromatin Proteins Inverts under DNA Replication Stress Conditions. ACS Chemical Biology, 2021, 16, 2193-2201.	3.4	6
12	$\mbox{\ensuremath{\mbox{\scriptsize (i)}}}\mbox{\ensuremath{\mbox{\scriptsize TP53}$\ensuremath{\mbox{\scriptsize (i)}}}\mbox{\ensuremath{\mbox{\scriptsize loss}}}\mbox{\ensuremath{\mbox{\scriptsize initiates}}}\mbox{\ensuremath{\mbox{\scriptsize chanisms}}}\mbox{\ensuremath{\mbox{\scriptsize 2021}}}\mbox{\ensuremath{\mbox{\scriptsize 14}}}\mbox{\ensuremath{\mbox{\scriptsize .}}}\mbox{\ensuremath{\mbox{\scriptsize and}}}\mbox{\ensuremath{\mbox{\scriptsize mbox{\scriptsize chanisms}}}\mbox{\ensuremath{\mbox{\scriptsize and}}}\mbox{\ensuremath{\mbox{\scriptsize and}}}\ensur$	2.4	17
13	Centrosome defects cause microcephaly by activating the 53BP1â€USP28â€₹P53 mitotic surveillance pathway. EMBO Journal, 2021, 40, e106118.	7.8	39
14	Replication catastrophe is responsible for intrinsic PAR glycohydrolase inhibitor-sensitivity in patient-derived ovarian cancer models. Journal of Experimental and Clinical Cancer Research, 2021, 40, 323.	8.6	12
15	The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genetics, 2021, 17, e1009868.	3.5	14
16	Genomic Heterogeneity and Clonal Evolution in High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3489-3489.	1.4	0
17	Improved assembly and variant detection of a haploid human genome using singleâ€molecule, highâ€fidelity long reads. Annals of Human Genetics, 2020, 84, 125-140.	0.8	100
18	Analysis of Released Circulating Tumor Cells During Surgery for Non-Small Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 1656-1666.	7.0	33

#	Article	IF	Citations
19	Transcriptional Activity and Stability of CD39+CD103+CD8+ T Cells in Human High-Grade Endometrial Cancer. International Journal of Molecular Sciences, 2020, 21, 3770.	4.1	13
20	Loss of <scp><i>NF2</i></scp> defines a genetic subgroup of <scp>nonâ€<i>FOS</i></scp> â€rearranged osteoblastoma. Journal of Pathology: Clinical Research, 2020, 6, 231-237.	3.0	11
21	A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity. Nature Communications, 2020, 11, 822.	12.8	62
22	Extensive Clonal Branching Shapes the Evolutionary History of High-Risk Pediatric Cancers. Cancer Research, 2020, 80, 1512-1523.	0.9	33
23	Detection of Circulating Tumor Cells in the Diagnostic Leukapheresis Product of Non-Small-Cell Lung Cancer Patients Comparing CellSearch® and ISET. Cancers, 2020, 12, 896.	3.7	31
24	Sperm DNA damage causes genomic instability in early embryonic development. Science Advances, 2020, 6, eaaz7602.	10.3	37
25	PIDDosomeâ€induced p53â€dependent ploidy restriction facilitates hepatocarcinogenesis. EMBO Reports, 2020, 21, e50893.	4.5	29
26	Altering microtubule dynamics is synergistically toxic with spindle assembly checkpoint inhibition. Life Science Alliance, 2020, 3, e201900499.	2.8	18
27	Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibitionâ€mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2â€deficient cancer cells. Molecular Oncology, 2019, 13, 2422-2440.	4.6	62
28	Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nature Genetics, 2019, 51, 824-834.	21.4	162
29	Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nature Communications, 2019, 10, 1784.	12.8	636
30	DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors. Cancer Cell, 2019, 35, 519-533.e8.	16.8	79
31	TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells. Oncogene, 2019, 38, 852-867.	5.9	43
32	Quantification of Aneuploidy in Mammalian Systems. Methods in Molecular Biology, 2019, 1896, 159-190.	0.9	33
33	BLM helicase suppresses recombination at G-quadruplex motifs in transcribed genes. Nature Communications, 2018, 9, 271.	12.8	83
34	Single-cell sequencing to quantify genomic integrity in cancer. International Journal of Biochemistry and Cell Biology, 2018, 94, 146-150.	2.8	15
35	The p38α Stress Kinase Suppresses Aneuploidy Tolerance by Inhibiting Hif-1α. Cell Reports, 2018, 25, 749-760.e6.	6.4	26
36	Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals. Developmental Cell, 2017, 40, 313-322.e5.	7.0	291

#	Article	IF	CITATIONS
37	Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. Nature Protocols, 2017, 12, 1151-1176.	12.0	89
38	p53 Prohibits Propagation of Chromosome Segregation Errors that Produce Structural Aneuploidies. Cell Reports, 2017, 19, 2423-2431.	6.4	127
39	Deletion of the MAD2L1 spindle assembly checkpoint gene is tolerated in mouse models of acute T-cell lymphoma and hepatocellular carcinoma. ELife, 2017, 6, .	6.0	56
40	Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq. ELife, 2017, 6, .	6.0	30
41	Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer's disease neurons. Genome Biology, 2016, 17, 116.	8.8	118
42	Direct chromosome-length haplotyping by single-cell sequencing. Genome Research, 2016, 26, 1565-1574.	5 . 5	52
43	Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biology, 2016, 17, 115.	8.8	178