Sophia Tsoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630409/publications.pdf

Version: 2024-02-01

83 papers 4,612 citations

147801 31 h-index 65 g-index

84 all docs

84 docs citations

times ranked

84

10057 citing authors

#	Article	IF	CITATIONS
1	Transcriptomeâ€based identification of novel endotypes in adult atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1486-1498.	5.7	8
2	Novel drug-target interactions via link prediction and network embedding. BMC Bioinformatics, 2022, 23, 121.	2.6	6
3	INFLUENCE OF FLG LOSS-OF-FUNCTION MUTATIONS IN HOST–MICROBE INTERACTIONS DURING ATOPIC SKIN INFLAMMATION. Journal of Dermatological Science, 2022, , .	1.9	0
4	Microbial and transcriptional differences elucidate atopic dermatitis heterogeneity across skin sites. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1173-1187.	5.7	16
5	Translational aspects of biologicals: monoclonal antibodies and antibody-drug conjugates as examples., 2021,, 329-350.		O
6	Combined antiâ€PDâ€1 and antiâ€CTLAâ€4 checkpoint blockade: Treatment of melanoma and immune mechanis of action. European Journal of Immunology, 2021, 51, 544-556.	ms 2.9	71
7	Cancer Grade Model: a multi-gene machine learning-based risk classification for improving prognosis in breast cancer. British Journal of Cancer, 2021, 125, 748-758.	6.4	15
8	Tumor-Infiltrating B Lymphocyte Profiling Identifies IgG-Biased, Clonally Expanded Prognostic Phenotypes in Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 4290-4304.	0.9	40
9	Sparse Regression in Cancer Genomics: Comparing Variable Selection and Predictions in Real World Data. Cancer Informatics, 2021, 20, 117693512110562.	1.9	2
10	IgE Activates Monocytes from Cancer Patients to Acquire a Pro-Inflammatory Phenotype. Cancers, 2020, 12, 3376.	3.7	15
11	B Cells in Patients With Melanoma: Implications for Treatment With Checkpoint Inhibitor Antibodies. Frontiers in Immunology, 2020, 11, 622442.	4.8	39
12	Identification of Important Biological Pathways for Ischemic Stroke Prediction through a Mathematical Programming Optimisation Model-DIGS. , 2020, , .		1
13	Microbe-host interplay in atopic dermatitis and psoriasis. Nature Communications, 2019, 10, 4703.	12.8	217
14	Network-based piecewise linear regression for QSAR modelling. Journal of Computer-Aided Molecular Design, 2019, 33, 831-844.	2.9	13
15	Immune mediator expression signatures are associated with improved outcome in ovarian carcinoma. Oncolmmunology, 2019, 8, e1593811.	4.6	20
16	Optimal Piecewise Linear Regression Algorithm for QSAR Modelling. Molecular Informatics, 2019, 38, e1800028.	2.5	19
17	IgE re-programs alternatively-activated human macrophages towards pro-inflammatory anti-tumoural states. EBioMedicine, 2019, 43, 67-81.	6.1	49
18	PHI-Nets: A Network Resource for Ascomycete Fungal Pathogens to Annotate and Identify Putative Virulence Interacting Proteins and siRNA Targets. Frontiers in Microbiology, 2019, 10, 2721.	3.5	8

#	Article	IF	Citations
19	Reactome Pengine: a web-logic API to the Homo sapiens reactome. Bioinformatics, 2018, 34, 2856-2858.	4.1	5
20	An immunologically relevant rodent model demonstrates safety of therapy using a tumourâ€specific IgE. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2328-2341.	5.7	24
21	Anti-Folate Receptor-α IgE but not IgG Recruits Macrophages to Attack Tumors via TNFα/MCP-1 Signaling. Cancer Research, 2017, 77, 1127-1141.	0.9	58
22	A regression tree approach using mathematical programming. Expert Systems With Applications, 2017, 78, 347-357.	7.6	89
23	Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types. Frontiers in Immunology, 2017, 8, 1911.	4.8	87
24	Community Structure Detection for Directed Networks through Modularity Optimisation. Algorithms, 2016, 9, 73.	2.1	11
25	Organizational principles of the Reactome human BioPAX model using graph theory methods. Journal of Complex Networks, 2016, , cnw003.	1.8	1
26	The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. Journal of Allergy and Clinical Immunology, 2016, 138, 500-508.e24.	2.9	201
27	A mathematical programming approach for sequential clustering of dynamic networks. European Physical Journal B, 2016, 89, 1.	1.5	9
28	Mathematical programming for piecewise linear regression analysis. Expert Systems With Applications, 2016, 44, 156-167.	7.6	85
29	Using ILP to Identify Pathway Activation Patterns in Systems Biology. Lecture Notes in Computer Science, 2016, 9575, 137-151.	1.3	2
30	Detection of Composite Communities in Multiplex Biological Networks. Scientific Reports, 2015, 5, 10345.	3.3	37
31	Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics. Scientific Programming, 2015, 2015, 1-13.	0.7	44
32	CytoASP: a Cytoscape app for qualitative consistency reasoning, prediction and repair in biological networks. BMC Systems Biology, 2015, 9, 34.	3.0	3
33	Sample re-weighting hyper box classifier for multi-class data classification. Computers and Industrial Engineering, 2015, 85, 44-56.	6.3	13
34	Pathway-level disease data mining through hyper-box principles. Mathematical Biosciences, 2015, 260, 25-34.	1.9	5
35	DyCoNet: A Gephi Plugin for Community Detection in Dynamic Complex Networks. PLoS ONE, 2014, 9, e101357.	2.5	41
36	Community Structure Detection for Overlapping Modules through Mathematical Programming in Protein Interaction Networks. PLoS ONE, 2014, 9, e112821.	2.5	18

#	Article	IF	CITATIONS
37	Integrative Biology Approach Identifies Cytokine Targeting Strategies for Psoriasis. Science Translational Medicine, 2014, 6, 223ra22.	12.4	41
38	Pathway activity inference for multiclass disease classification through a mathematical programming optimisation framework. BMC Bioinformatics, 2014, 15, 390.	2.6	6
39	Global Analysis of DNA Methylation Variation in Adipose Tissue from Twins Reveals Links to Disease-Associated Variants in Distal Regulatory Elements. American Journal of Human Genetics, 2013, 93, 876-890.	6.2	330
40	Gene Network and Proteomic Analyses of Cardiac Responses to Pathological and Physiological Stress. Circulation: Cardiovascular Genetics, 2013, 6, 588-597.	5.1	21
41	Network-Based Data Integration for Selecting Candidate Virulence Associated Proteins in the Cereal Infecting Fungus Fusarium graminearum. PLoS ONE, 2013, 8, e67926.	2.5	18
42	A Mathematical Programming Approach to Community Structure Detection in Complex Networks. Computer Aided Chemical Engineering, 2012, 30, 1387-1391.	0.5	2
43	DETECTION OF DISJOINT AND OVERLAPPING MODULES IN WEIGHTED COMPLEX NETWORKS. International Journal of Modeling, Simulation, and Scientific Computing, 2012, 15, 1150023.	1.4	9
44	Transcriptome classification reveals molecular subtypes in psoriasis. BMC Genomics, 2012, 13, 472.	2.8	55
45	Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nature Genetics, 2012, 44, 1084-1089.	21.4	701
46	Functional and Topological Properties in Hepatocellular Carcinoma Transcriptome. PLoS ONE, 2012, 7, e35510.	2.5	24
47	Toward Prediction of Immune Mechanisms and Design of Immunotherapies in Melanoma. Critical Reviews in Biomedical Engineering, 2012, 40, 279-294.	0.9	8
48	Detection of Multi-clustered Genes and Community Structure for the Plant Pathogenic Fungus Fusarium graminearum. Lecture Notes in Computer Science, 2012, , 69-86.	1.3	8
49	Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. Journal of Molecular and Cellular Cardiology, 2011, 50, 982-990.	1.9	24
50	Disease Classification through Integer Optimisation. Computer Aided Chemical Engineering, 2011, 29, 1548-1552.	0.5	1
51	Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks. BMC Research Notes, 2011, 4, 462.	1.4	17
52	Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins. BMC Evolutionary Biology, 2011, 11, 142.	3.2	3
53	Genome-wide expression patterns in physiological cardiac hypertrophy. BMC Genomics, 2010, 11, 557.	2.8	17
54	A Systems Model for Immune Cell Interactions Unravels the Mechanism of Inflammation in Human Skin. PLoS Computational Biology, 2010, 6, e1001024.	3.2	51

#	Article	IF	CITATIONS
55	Promoter Complexity and Tissue-Specific Expression of Stress Response Components in Mytilus galloprovincialis, a Sessile Marine Invertebrate Species. PLoS Computational Biology, 2010, 6, e1000847.	3.2	9
56	Module detection in complex networks using integer optimisation. Algorithms for Molecular Biology, 2010, 5, 36.	1.2	23
57	Stratification of co-evolving genomic groups using ranked phylogenetic profiles. BMC Bioinformatics, 2009, 10, 355.	2.6	8
58	MINLP Models for the Synthesis of Optimal Peptide Tags and Downstream Protein Processing. Biotechnology Progress, 2008, 21, 875-884.	2.6	23
59	Computational methodologies for genome evolution and functional association. Computers and Chemical Engineering, 2007, 31, 943-949.	3.8	1
60	Finding community structures in complex networks using mixed integer optimisation. European Physical Journal B, 2007, 60, 231-239.	1.5	67
61	Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research, 2005, 33, 6083-6089.	14.5	570
62	CoGenT++: an extensive and extensible data environment for computational genomics. Bioinformatics, 2005, 21, 3806-3810.	4.1	22
63	Percolation of annotation errors through hierarchically structured protein sequence databases. Mathematical Biosciences, 2005, 193, 223-234.	1.9	67
64	Robustness of the p53 network and biological hackers. FEBS Letters, 2005, 579, 3037-3042.	2.8	38
65	Automated metabolic reconstruction for <i>Methanococcus jannaschii </i> /i>. Archaea, 2004, 1, 223-229.	2.3	37
66	Computational Analysis of Plasmodium falciparum Metabolism: Organizing Genomic Information to Facilitate Drug Discovery. Genome Research, 2004, 14, 917-924.	5.5	206
67	Metabolic database systems for the analysis of genome-wide function. Biotechnology and Bioengineering, 2003, 84, 750-755.	3.3	7
68	Beyond 100 genomes. Genome Biology, 2003, 4, 402.	9.6	23
69	Genome evolution reveals biochemical networks and functional modules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15428-15433.	7.1	140
70	The Phylogenetic Extent of Metabolic Enzymes and Pathways. Genome Research, 2003, 13, 422-427.	5.5	91
71	Evaluation of annotation strategies using an entire genome sequence. Bioinformatics, 2003, 19, 717-726.	4.1	65
72	Automated Genome Functional Annotation for Structural Genomics., 2003,, 349-368.		O

SOPHIA TSOKA

#	Article	lF	CITATIONS
73	Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics, 2002, 18, 1641-1649.	4.1	153
74	Functional Versatility and Molecular Diversity of the Metabolic Map of Escherichia coli. Genome Research, 2001, 11, 1503-1510.	5 . 5	29
75	Prediction of protein interactions: metabolic enzymes are frequently involved in gene fusion. Nature Genetics, 2000, 26, 141-142.	21.4	91
76	Selective Flocculation and Precipitation for the Improvement of Virus-Like Particle Recovery from Yeast Homogenate. Biotechnology Progress, 2000, 16, 661-667.	2.6	18
77	CAST: an iterative algorithm for the complexity analysis of sequence tracts. Bioinformatics, 2000, 16, 915-922.	4.1	165
78	Recent developments and future directions in computational genomics. FEBS Letters, 2000, 480, 42-48.	2.8	49
79	Genome sequences and great expectations. Genome Biology, 2000, 2, interactions0001.1.	9.6	40
80	Virus-like particle analysis in yeast homogenate using a laser light-scattering assay., 1999, 63, 290-297.		5
81	Reproducibility in genome sequence annotation: the Plasmodium falciparum chromosome 2 case. FEBS Letters, 1999, 451, 354-355.	2.8	14
82	Rapid monitoring of virus-like particles using an optical biosensor: A feasibility study. Journal of Biotechnology, 1998, 63, 147-153.	3.8	20
83	Selection of Chromatographic Protein Purification Operations Based on Physicochemical Propertiesa. Annals of the New York Academy of Sciences, 1994, 721, 348-364.	3.8	23