
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630364/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Mepolizumab and Exacerbations of Refractory Eosinophilic Asthma. New England Journal of Medicine, 2009, 360, 973-984.	27.0	1,672
2	Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet, The, 2002, 360, 1715-1721.	13.7	1,598
3	Mast-Cell Infiltration of Airway Smooth Muscle in Asthma. New England Journal of Medicine, 2002, 346, 1699-1705.	27.0	1,147
4	Evidence of a Role of Tumor Necrosis Factor α in Refractory Asthma. New England Journal of Medicine, 2006, 354, 697-708.	27.0	783
5	Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. Journal of Allergy and Clinical Immunology, 2012, 130, 647-654.e10.	2.9	546
6	The role of the mast cell in the pathophysiology of asthma. Journal of Allergy and Clinical Immunology, 2006, 117, 1277-1284.	2.9	477
7	Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax, 2007, 62, 1043-1049.	5.6	396
8	T _H 2 and T _H 17 inflammatory pathways are reciprocally regulated in asthma. Science Translational Medicine, 2015, 7, 301ra129.	12.4	380
9	Macrophage and Mast-Cell Invasion of Tumor Cell Islets Confers a Marked Survival Advantage in Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2005, 23, 8959-8967.	1.6	330
10	The CXCL10/CXCR3 Axis Mediates Human Lung Mast Cell Migration to Asthmatic Airway Smooth Muscle. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1103-1108.	5.6	264
11	The relationship between clinical outcomes and medication adherence in difficult-to-control asthma: Table 1. Thorax, 2012, 67, 751-753.	5.6	259
12	Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2012, 129, 104-111.e9.	2.9	256
13	Increased sputum and bronchial biopsy IL-13 expression in severe asthma. Journal of Allergy and Clinical Immunology, 2008, 121, 685-691.	2.9	243
14	IgE Sensitization to <i>Aspergillus fumigatus</i> Is Associated with Reduced Lung Function in Asthma. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1362-1368.	5.6	222
15	TH2 cytokine expression in bronchoalveolar lavage fluid T lymphocytes and bronchial submucosa is a feature of asthma and eosinophilic bronchitis. Journal of Allergy and Clinical Immunology, 2002, 110, 899-905.	2.9	207
16	Elevated Sputum Interleukin-5 and Submucosal Eosinophilia in Obese Individuals with Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 657-663.	5.6	198
17	Qualitative Analysis of High-Resolution CT Scans in Severe Asthma. Chest, 2009, 136, 1521-1528.	0.8	190
18	Induced Sputum Inflammatory Mediator Concentrations in Chronic Cough. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 15-19.	5.6	173

#	Article	IF	CITATIONS
19	Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. Journal of Allergy and Clinical Immunology, 2004, 114, 1106-1109.	2.9	151
20	Outcomes after cessation of mepolizumab therapy in severe eosinophilic asthma: AÂ12-month follow-up analysis. Journal of Allergy and Clinical Immunology, 2014, 133, 921-923.	2.9	150
21	Clinical, Radiologic, and Induced Sputum Features of Chronic Obstructive Pulmonary Disease in Nonsmokers. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 1078-1083.	5.6	148
22	Induced Sputum Inflammatory Mediator Concentrations in Eosinophilic Bronchitis and Asthma. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 878-882.	5.6	147
23	Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2014, 133, 704-712.e4.	2.9	139
24	Airway Smooth Muscle and Mast Cell–derived CC Chemokine Ligand 19 Mediate Airway Smooth Muscle Migration in Asthma. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1179-1188.	5.6	134
25	Activation of human mast cells through the platelet-activating factor receptor. Journal of Allergy and Clinical Immunology, 2010, 125, 1137-1145.e6.	2.9	129
26	Fibrocyte localization to the airway smooth muscle is a feature of asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 376-384.	2.9	120
27	Immunopathology and human mast cell cytokines. Critical Reviews in Oncology/Hematology, 1999, 31, 119-133.	4.4	117
28	Mast cells in asthma – state of the art. Clinical and Experimental Allergy, 2016, 46, 194-263.	2.9	116
29	Remotely Monitored Therapy and Nitric Oxide Suppression Identifies Nonadherence in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 454-464.	5.6	115
30	Mast Cells Promote Airway Smooth Muscle Cell Differentiation via Autocrine Up-Regulation of TGF-β1. Journal of Immunology, 2008, 181, 5001-5007.	0.8	113
31	Airway hyperresponsiveness is dissociated from airway wall structural remodeling. Journal of Allergy and Clinical Immunology, 2008, 122, 335-341.e3.	2.9	110
32	Human mast cells express stem cell factor. , 1998, 186, 59-66.		104
33	The K+ channel iKCA1 potentiates Ca2+ influx and degranulation in human lung mast cells. Journal of Allergy and Clinical Immunology, 2004, 114, 66-72.	2.9	101
34	Human Airway Smooth Muscle Promotes Human Lung Mast Cell Survival, Proliferation, and Constitutive Activation: Cooperative Roles for CADM1, Stem Cell Factor, and IL-6. Journal of Immunology, 2008, 181, 2772-2780.	0.8	100
35	Quantitative analysis of high-resolution computed tomography scans in severe asthma subphenotypes. Thorax, 2010, 65, 775-781.	5.6	93
36	The controversial role of mast cells in fibrosis. Immunological Reviews, 2018, 282, 198-231.	6.0	93

#	Article	IF	CITATIONS
37	Composite type-2 biomarker strategy versus a symptom–risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. Lancet Respiratory Medicine,the, 2021, 9, 57-68.	10.7	88
38	Vascular remodeling is a feature of asthma and nonasthmatic eosinophilic bronchitis. Journal of Allergy and Clinical Immunology, 2007, 120, 813-819.	2.9	87
39	The reclassification of asthma based on subphenotypes. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 43-50.	2.3	85
40	Differential expression of CCR3 and CXCR3 by human lung and bone marrow-derived mast cells: implications for tissue mast cell migration. Journal of Leukocyte Biology, 2005, 77, 759-766.	3.3	84
41	Functional Transient Receptor Potential Melastatin 7 Channels Are Critical for Human Mast Cell Survival. Journal of Immunology, 2007, 179, 4045-4052.	0.8	78
42	Research in progress: Medical Research Council United Kingdom Refractory Asthma Stratification Programme (RASP-UK). Thorax, 2016, 71, 187-189.	5.6	78
43	ACE2, TMPRSS2, and furin gene expression in the airways of people with asthma—implications for COVID-19. Journal of Allergy and Clinical Immunology, 2020, 146, 208-211.	2.9	77
44	Cooperative molecular and cellular networks regulate Tollâ€like receptorâ€dependent inflammatory responses. FASEB Journal, 2006, 20, 2153-2155.	0.5	76
45	The role of the mast cell in asthma: a reassessment. Current Opinion in Allergy and Clinical Immunology, 2003, 3, 45-50.	2.3	75
46	Effectiveness of voriconazole in the treatment of Aspergillus fumigatus–associated asthma (EVITA3) Tj ETQq0	0 0 rgBT 2.9	/Overlock 10 ⁻ 74
47	Resting and Activation-Dependent Ion Channels in Human Mast Cells. Journal of Immunology, 2001, 167, 4261-4270.	0.8	71
48	Ion channel gene expression in human lung, skin, and cord blood-derived mast cells. Journal of Leukocyte Biology, 2003, 73, 614-620.	3.3	71
49	MUC5AC and a Glycosylated Variant of MUC5B Alter Mucin Composition in Children With Acute Asthma. Chest, 2017, 152, 771-779.	0.8	70
50	KCa3.1 Ca2+Activated K+Channels Regulate Human Airway Smooth Muscle Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 525-531.	2.9	69
51	The K ⁺ channels K _{Ca} 3.1 and K _v 1.3 as novel targets for asthma therapy. British Journal of Pharmacology, 2009, 157, 1330-1339.	5.4	67
52	Human Lung Mast Cells Adhere to Human Airway Smooth Muscle, in Part, via Tumor Suppressor in Lung Cancer-1. Journal of Immunology, 2006, 176, 1238-1243.	0.8	65
53	CRACM/Orai ion channel expression and function in human lung mast cells. Journal of Allergy and Clinical Immunology, 2012, 129, 1628-1635.e2.	2.9	64
54	Mast cells and their activation in lung disease. Translational Research, 2016, 174, 60-76.	5.0	61

#	Article	IF	CITATIONS
55	Glucocorticoid receptor β and histone deacetylase 1 and 2 expression in the airways of severe asthma. Thorax, 2012, 67, 392-398.	5.6	60
56	Inhibition of human mast cell proliferation and survival by tamoxifen in association with ion channel modulation. Journal of Allergy and Clinical Immunology, 2003, 112, 965-972.	2.9	54
57	Mast cells in airway diseases and interstitial lung disease. European Journal of Pharmacology, 2016, 778, 125-138.	3.5	54
58	Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migrationvia the adenosine A2A receptor. European Journal of Immunology, 2007, 37, 1653-1662.	2.9	53
59	β 2 â€Adrenoceptor regulation of the K + channel iK Ca 1 in human mast cells. FASEB Journal, 2005, 19, 1006-1008.	0.5	52
60	Human Lung Mast Cells Mediate Pneumococcal Cell Death in Response to Activation by Pneumolysin. Journal of Immunology, 2010, 184, 7108-7115.	0.8	46
61	Inflammatory and Satellite Cells in the Quadriceps of Patients With COPD and Response to Resistance Training. Chest, 2012, 142, 1134-1142.	0.8	44
62	Increased constitutive αSMA and Smad2/3 expression in idiopathic pulmonary fibrosis myofibroblasts is KCa3.1-dependent. Respiratory Research, 2014, 15, 155.	3.6	44
63	IgE alone promotes human lung mast cell survival through the autocrine production of IL-6. BMC Immunology, 2008, 9, 2.	2.2	43
64	A Truncated Splice-Variant of the FcÎμRIβ Receptor Subunit Is Critical for Microtubule Formation and Degranulation in Mast Cells. Immunity, 2013, 38, 906-917.	14.3	43
65	The K+ Channel KCa3.1 as a Novel Target for Idiopathic Pulmonary Fibrosis. PLoS ONE, 2013, 8, e85244.	2.5	43
66	The Mast Cell as a Source of Cytokines in Asthma. Annals of the New York Academy of Sciences, 1996, 796, 272-281.	3.8	41
67	Engagement of the EP ₂ prostanoid receptor closes the K ⁺ channel K _{Ca} 3.1 in human lung mast cells and attenuates their migration. European Journal of Immunology, 2008, 38, 2548-2556.	2.9	40
68	Human lung myofibroblast TGFβ1-dependent Smad2/3 signalling is Ca2+-dependent and regulated by KCa3.1 K+ channels. Fibrogenesis and Tissue Repair, 2015, 8, 5.	3.4	40
69	Fractional Exhaled Nitric Oxide Nonsuppression Identifies Corticosteroid-Resistant Type 2 Signaling in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 731-734.	5.6	40
70	Lipoxin A4 Attenuates Constitutive and TGF-β1–Dependent Profibrotic Activity in Human Lung Myofibroblasts. Journal of Immunology, 2015, 195, 2852-2860.	0.8	38
71	Subclinical phenotypes of asthma. Current Opinion in Allergy and Clinical Immunology, 2010, 10, 54-59.	2.3	37
72	Primary Human Airway Epithelial Cell-Dependent Inhibition of Human Lung Mast Cell Degranulation. PLoS ONE, 2012, 7, e43545.	2.5	37

5

#	Article	IF	CITATIONS
73	The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Molecular Biology of the Cell, 2015, 26, 1711-1727.	2.1	35
74	New Developments in Mast Cell Biology. Chest, 2016, 150, 680-693.	0.8	35
75	A novel FcεRIβâ€chain truncation regulates human mast cell proliferation and survival. FASEB Journal, 2010, 24, 4047-4057.	0.5	34
76	A model of human lung fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis. Scientific Reports, 2018, 8, 342.	3.3	34
77	Novel airway smooth muscle–mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. European Respiratory Journal, 2020, 56, 1901458.	6.7	34
78	Functional KCa3.1 K+ channels are required for human fibrocyte migration. Journal of Allergy and Clinical Immunology, 2011, 128, 1303-1309.e2.	2.9	33
79	Mast Cells in Lung Inflammation. Advances in Experimental Medicine and Biology, 2011, 716, 235-269.	1.6	33
80	Mast Cell Ion Channels. , 2005, 87, 163-178.		32
81	Associations in asthma between quantitative computed tomography andÂbronchial biopsy-derived airway remodelling. European Respiratory Journal, 2017, 49, 1601507.	6.7	32
82	Functional KCa3.1 Channels Regulate Steroid Insensitivity in Bronchial Smooth Muscle Cells. Journal of Immunology, 2013, 191, 2624-2636.	0.8	31
83	A CEACAM6-High Airway Neutrophil Phenotype and CEACAM6-High Epithelial Cells Are Features of Severe Asthma. Journal of Immunology, 2017, 198, 3307-3317.	0.8	31
84	Ca ²⁺ -Activated K ⁺ Channel–3.1 Blocker TRAM-34 Attenuates Airway Remodeling and Eosinophilia in a Murine Asthma Model. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 212-219.	2.9	30
85	A randomized, placeboâ€controlled trial evaluating effects of lebrikizumab on airway eosinophilic inflammation and remodelling in uncontrolled asthma (CLAVIER). Clinical and Experimental Allergy, 2020, 50, 1342-1351.	2.9	30
86	CADM1 Is a Key Receptor Mediating Human Mast Cell Adhesion to Human Lung Fibroblasts and Airway Smooth Muscle Cells. PLoS ONE, 2013, 8, e61579.	2.5	30
87	KCa3.1 Channel-Blockade Attenuates Airway Pathophysiology in a Sheep Model of Chronic Asthma. PLoS ONE, 2013, 8, e66886.	2.5	28
88	CADM1 Controls Actin Cytoskeleton Assembly and Regulates Extracellular Matrix Adhesion in Human Mast Cells. PLoS ONE, 2014, 9, e85980.	2.5	27
89	Bidirectional Counterregulation of Human Lung Mast Cell and Airway Smooth Muscle β2 Adrenoceptors. Journal of Immunology, 2016, 196, 55-63.	0.8	27
90	Airway pathological heterogeneity in asthma: Visualization of disease microclusters using topological data analysis. Journal of Allergy and Clinical Immunology, 2018, 142, 1457-1468.	2.9	27

#	Article	IF	CITATIONS
91	CCL11 and GM-CSF Differentially Use the Rho GTPase Pathway to Regulate Motility of Human Eosinophils in a Three-Dimensional Microenvironment. Journal of Immunology, 2008, 180, 8354-8360.	0.8	26
92	Inhibition of the K _{Ca} 3.1 Channel Alleviates Established Pulmonary Fibrosis in a Large Animal Model. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 539-550.	2.9	26
93	Harnessing the Role of HDAC6 in Idiopathic Pulmonary Fibrosis: Design, Synthesis, Structural Analysis, and Biological Evaluation of Potent Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 9960-9988.	6.4	26
94	Detection of an activating c-kit mutation by real-time PCR in patients with anaphylaxis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 572, 1-13.	1.0	25
95	The Contribution of Orai(CRACM)1 and Orai(CRACM)2 Channels in Store-Operated Ca2+ Entry and Mediator Release in Human Lung Mast Cells. PLoS ONE, 2013, 8, e74895.	2.5	25
96	Reduced epithelial suppressor of cytokine signalling 1 in severe eosinophilic asthma. European Respiratory Journal, 2016, 48, 715-725.	6.7	24
97	Orai/CRACM1 and KCa3.1 ion channels interact in the human lung mast cell plasma membrane. Cell Communication and Signaling, 2015, 13, 32.	6.5	23
98	Ca2+signalling in fibroblasts and the therapeutic potential of KCa3.1 channel blockers in fibrotic diseases. British Journal of Pharmacology, 2020, 177, 1003-1024.	5.4	23
99	Counterregulation of β2-adrenoceptor function in human mast cells by stem cell factor. Journal of Allergy and Clinical Immunology, 2010, 125, 257-263.e5.	2.9	22
100	Patient Perceptions of Living with Severe Asthma: Challenges to Effective Management. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2613-2621.e1.	3.8	21
101	CADM1 isoforms differentially regulate human mast cell survival and homotypic adhesion. Cellular and Molecular Life Sciences, 2012, 69, 2751-2764.	5.4	20
102	Clinical Outcomes in People with Difficult-to-Control Asthma Using Electronic Monitoring to Support Medication Adherence. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1529-1538.e2.	3.8	20
103	β2-Adrenoceptor Function in Asthma. Advances in Immunology, 2017, 136, 1-28.	2.2	19
104	CADM1 is expressed as multiple alternatively spliced functional and dysfunctional isoforms in human mast cells. Molecular Immunology, 2013, 53, 345-354.	2.2	18
105	A comparison of daily physical activity profiles between adults with severe asthma and healthy controls. European Respiratory Journal, 2020, 56, 1902219.	6.7	18
106	KCa3.1 K+ Channel Expression and Function in Human Bronchial Epithelial Cells. PLoS ONE, 2015, 10, e0145259.	2.5	17
107	The relationship between the Leicester cough questionnaire, eosinophilic airway inflammation and asthma patient related outcomes in severe adult asthma. Respiratory Research, 2017, 18, 44.	3.6	16
108	Exacerbations of severe asthma in patients treated with mepolizumab. European Respiratory Journal, 2018, 52, 1801127.	6.7	16

#	Article	IF	CITATIONS
109	A Feasibility Study of a Randomized Controlled Trial of Asthma-Tailored Pulmonary Rehabilitation Compared with Usual Care in Adults with Severe Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3418-3427.	3.8	16
110	Impaired P2X1 Receptor–Mediated Adhesion in Eosinophils from Asthmatic Patients. Journal of Immunology, 2016, 196, 4877-4884.	0.8	13
111	Mast-Cell Tryptase Release Contributes to Disease Progression in Lymphangioleiomyomatosis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 431-444.	5.6	11
112	Airway remodelling rather than cellular infiltration characterizes both type2 cytokine biomarkerâ€high and â€low severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2974-2986.	5.7	11
113	Understanding the measurement properties of the incremental shuttle walk test in patients with severe asthma. Respirology, 2019, 24, 752-757.	2.3	9
114	Tensin1 expression and function in chronic obstructive pulmonary disease. Scientific Reports, 2019, 9, 18942.	3.3	9
115	TGFβ1 induces resistance of human lung myofibroblasts to cell death via downâ€regulation of TRPA1 channels. British Journal of Pharmacology, 2021, 178, 2948-2962.	5.4	8
116	Protocol for a feasibility study to inform the development of a multicentre randomised controlled trial of asthma-tailored pulmonary rehabilitation versus usual care for individuals with severe asthma. BMJ Open, 2016, 6, e010574.	1.9	7
117	Endothelial protein C receptor is overexpressed in colorectal cancer as a result of amplification and hypomethylation of chromosome 20q. Journal of Pathology: Clinical Research, 2017, 3, 155-170.	3.0	7
118	Accurately measuring and modeling Th2 and Th17 endotypes in severe asthma. Annals of Translational Medicine, 2017, 5, 91-91.	1.7	7
119	Nocturnal temperature-controlled laminar airflow device for adults with severe allergic asthma: the LASER RCT. Health Technology Assessment, 2019, 23, 1-140.	2.8	7
120	Relationship between inflammatory status and microbial composition in severe asthma and during exacerbation. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3362-3376.	5.7	7
121	Evidence for a novel Kit adhesion domain mediating human mast cell adhesion to structural airway cells. Respiratory Research, 2015, 16, 86.	3.6	6
122	Potential Role of Mast Cells in Regulating Corticosteroid Insensitivity in Severe Asthma. Advances in Experimental Medicine and Biology, 2021, 1303, 1-12.	1.6	4
123	Pro: Access to advanced therapies for severe asthma should be restricted to patients with satisfactory adherence to maintenance treatment. Breathe, 2021, 17, 210024.	1.3	2
124	Mechanisms of Mast Cell Activation in Severe Asthma: Beyond IgE. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 375-377.	5.6	2
125	The Fcεriβ Homologue, MS4A4, Promotes Fcεri-Dependent Human Mast Cell Degranulation By Facilitating PLCγ1 Signaling. Journal of Allergy and Clinical Immunology, 2015, 135, AB240.	2.9	1
126	Human Lung Mast Cells Impair Corticosteroid Responsiveness in Human Airway Smooth Muscle Cells. Frontiers in Allergy, 2021, 2, 785100.	2.8	1

#	Article	IF	CITATIONS
127	P090 <break></break> A human lung explant model of fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis. QJM - Monthly Journal of the Association of Physicians, 2016, , .	0.5	0
128	Study of Endogenous CRAC Channels in Human Mast Cells Using an Adenoviral Delivery System to Transduce Cells with Orai-Targeting shRNAs or with cDNAs Expressing Dominant-Negative Orai Channel Mutations. Methods in Molecular Biology, 2018, 1843, 115-124.	0.9	0
129	A Randomized, Placeboâ€Controlled Trial Evaluating Effects of Lebrikizumab on Airway Eosinophilic Inflammation and Remodeling in Uncontrolled Asthma (CLAVIER). FASEB Journal, 2020, 34, 1-1.	0.5	0