
Santiago Rojas-Carbonell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Standard Operating Protocol for Ion-Exchange Capacity of Anion Exchange Membranes. Frontiers in Energy Research, 2022, 10, .	2.3	3
2	Structure-transport relationships of poly(aryl piperidinium) anion-exchange membranes: Eeffect of anions and hydration. Journal of Membrane Science, 2020, 598, 117680.	8.2	51
3	High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy and Environmental Science, 2020, 13, 4098-4105.	30.8	147
4	Correlations between Synthesis and Performance of Fe-Based PGM-Free Catalysts in Acidic and Alkaline Media: Evolution of Surface Chemistry and Morphology. ACS Applied Energy Materials, 2019, 2, 5406-5418.	5.1	44
5	High-Performance Hydroxide Exchange Membrane Fuel Cells through Optimization of Relative Humidity, Backpressure and Catalyst Selection. Journal of the Electrochemical Society, 2019, 166, F3305-F3310.	2.9	49
6	Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nature Energy, 2019, 4, 392-398.	39.5	570
7	Effect of pH on the Activity of Platinum Group Metal-Free Catalysts in Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 3041-3053.	11.2	158
8	Inhibition of Surface Chemical Moieties by Tris(hydroxymethyl)aminomethane: A Key to Understanding Oxygen Reduction on Iron–Nitrogen–Carbon Catalysts. ACS Applied Energy Materials, 2018, 1, 1942-1949.	5.1	18
9	Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance. Journal of Power Sources, 2018, 375, 11-20.	7.8	62
10	Integration of Platinum Group Metalâ€Free Catalysts and Bilirubin Oxidase into a Hybrid Material for Oxygen Reduction: Interplay of Chemistry and Morphology. ChemSusChem, 2017, 10, 1534-1542.	6.8	8
11	A family of Fe-N-C oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: Relationships between surface chemistry and performances. Applied Catalysis B: Environmental, 2017, 205, 24-33.	20.2	135
12	Transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in neutral electrolyte. Electrochemistry Communications, 2017, 75, 38-42.	4.7	97
13	Carbon-Based Air-Breathing Cathodes for Microbial Fuel Cells. Catalysts, 2016, 6, 127.	3.5	58
14	Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system. Biosensors and Bioelectronics, 2016, 86, 459-465.	10.1	59
15	Hybrid electrocatalysts for oxygen reduction reaction: Integrating enzymatic and non-platinum group metal catalysis. Electrochimica Acta, 2016, 190, 504-510.	5.2	12
16	Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 25917-25928.	3.1	433
17	Ni-La Electrocatalysts for Direct Hydrazine Alkaline Anion-Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2014, 161, H3106-H3112.	2.9	12