Cheng Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630185/publications.pdf Version: 2024-02-01

CHENC CUI

#	Article	IF	CITATIONS
1	Multibranched Linear DNA-Controlled Assembly of Silver Nanoclusters and Their Applications in Aptamer-Based Cell Recognition. ACS Applied Materials & Interfaces, 2022, 14, 14953-14960.	8.0	19
2	Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angewandte Chemie, 2021, 133, 2249-2259.	2.0	16
3	Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 2221-2231.	13.8	221
4	Enhancing the Nucleolytic Resistance and Bioactivity of Functional Nucleic Acids by Diverse Nanostructures through <i>in Situ</i> Polymerizationâ€Induced Selfâ€assembly. ChemBioChem, 2021, 22, 754-759.	2.6	14
5	Engineering G-quadruplex aptamer to modulate its binding specificity. National Science Review, 2021, 8, nwaa202.	9.5	5
6	Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS Applied Materials & Interfaces, 2021, 13, 9542-9560.	8.0	66
7	A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy. Science China Chemistry, 2021, 64, 1009-1019.	8.2	5
8	Logic-Gated Cell-Derived Nanovesicles via DNA-Based Smart Recognition Module. ACS Applied Materials & Interfaces, 2021, 13, 30397-30403.	8.0	19
9	Plasmon Coupling in DNA-Assembled Silver Nanoclusters. Journal of the American Chemical Society, 2021, 143, 14573-14580.	13.7	13
10	Lipid–oligonucleotide conjugates for bioapplications. National Science Review, 2020, 7, 1933-1953.	9.5	43
11	Transducing Complex Biomolecular Interactions by Temperature-Output Artificial DNA Signaling Networks. Journal of the American Chemical Society, 2020, 142, 14234-14239.	13.7	36
12	Aptamer-Directed Protein-Specific Multiple Modifications of Membrane Glycoproteins on Living Cells. ACS Applied Materials & Interfaces, 2020, 12, 37845-37850.	8.0	22
13	A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery. Chemical Science, 2020, 11, 9648-9654.	7.4	13
14	Precise Deposition of Polydopamine on Cancer Cell Membrane as Artificial Receptor for Targeted Drug Delivery. IScience, 2020, 23, 101750.	4.1	9
15	A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nature Chemistry, 2020, 12, 381-390.	13.6	122
16	Molecular domino reactor built by automated modular synthesis for cancer treatment. Theranostics, 2020, 10, 4030-4041.	10.0	14
17	Circular Bispecific Aptamer-Mediated Artificial Intercellular Recognition for Targeted T Cell Immunotherapy. ACS Nano, 2020, 14, 9562-9571.	14.6	65
18	DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nature Communications, 2020, 11, 978.	12.8	72

CHENG CUI

#	Article	IF	CITATIONS
19	Enhanced in Vivo Blood–Brain Barrier Penetration by Circular Tau–Transferrin Receptor Bifunctional Aptamer for Tauopathy Therapy. Journal of the American Chemical Society, 2020, 142, 3862-3872.	13.7	64
20	Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020, 12, 103.	27.0	363
21	Aptamer Displacement Reaction from Live-Cell Surfaces and Its Applications. Journal of the American Chemical Society, 2019, 141, 17174-17179.	13.7	51
22	Visible Light-Driven Self-Powered Device Based on a Straddling Nano-Heterojunction and Bio-Application for the Quantitation of Exosomal RNA. ACS Nano, 2019, 13, 1817-1827.	14.6	24
23	Elucidation and Structural Modeling of CD71 as a Molecular Target for Cell-Specific Aptamer Binding. Journal of the American Chemical Society, 2019, 141, 10760-10769.	13.7	106
24	Facile approach to prepare HSA-templated MnO2 nanosheets as oxidase mimic for colorimetric detection of glutathione. Talanta, 2019, 195, 40-45.	5.5	75
25	Construction of self-powered cytosensing device based on ZnO nanodisks@g-C3N4 quantum dots and application in the detection of CCRF-CEM cells. Nano Energy, 2018, 46, 101-109.	16.0	78
26	Enhanced Targeted Gene Transduction: AAV2 Vectors Conjugated to Multiple Aptamers via Reducible Disulfide Linkages. Journal of the American Chemical Society, 2018, 140, 2-5.	13.7	43
27	Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging. Nanoscale, 2018, 10, 10986-10990.	5.6	36
28	Selfâ€Assembled Aptamerâ€Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. Angewandte Chemie, 2018, 130, 17294-17298.	2.0	31
29	Selfâ€Assembled Aptamerâ€Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. Angewandte Chemie - International Edition, 2018, 57, 17048-17052.	13.8	122
30	Modulating Aptamer Specificity with pH-Responsive DNA Bonds. Journal of the American Chemical Society, 2018, 140, 13335-13339.	13.7	97
31	ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chemical Science, 2018, 9, 7505-7509.	7.4	110
32	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Targetâ€Cell Recognition. Angewandte Chemie - International Edition, 2018, 57, 11589-11593.	13.8	33
33	Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review. Cancers, 2018, 10, 47.	3.7	85
34	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Targetâ€Cell Recognition. Angewandte Chemie, 2018, 130, 11763-11767.	2.0	8
35	Thiol–ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chemical Science, 2017, 8, 6182-6187.	7.4	89
36	Molecular Recognition-Based DNA Nanoassemblies on the Surfaces of Nanosized Exosomes. Journal of the American Chemical Society, 2017, 139, 5289-5292.	13.7	175

CHENG CUI

#	Article	IF	CITATIONS
37	Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. ACS Nano, 2017, 11, 3943-3949.	14.6	370
38	Recognitionâ€thenâ€Reaction Enables Siteâ€Selective Bioconjugation to Proteins on Liveâ€Cell Surfaces. Angewandte Chemie - International Edition, 2017, 56, 11954-11957.	13.8	37
39	Recognitionâ€thenâ€Reaction Enables Siteâ€Selective Bioconjugation to Proteins on Liveâ€Cell Surfaces. Angewandte Chemie, 2017, 129, 12116-12119.	2.0	17
40	Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. Angewandte Chemie, 2017, 129, 12078-12082.	2.0	34
41	Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. Angewandte Chemie - International Edition, 2017, 56, 11916-11920.	13.8	390
42	DNA micelle flares: a study of the basic properties that contribute to enhanced stability and binding affinity in complex biological systems. Chemical Science, 2016, 7, 6041-6049.	7.4	37
43	Aptamers against Cells Overexpressing Glypicanâ€3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angewandte Chemie - International Edition, 2016, 55, 12372-12375.	13.8	78
44	Aptamers against Cells Overexpressing Glypicanâ€3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angewandte Chemie, 2016, 128, 12560-12563.	2.0	9
45	Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery. Nanoscale, 2016, 8, 8600-8606.	5.6	78
46	Using modified aptamers for site specific protein–aptamer conjugations. Chemical Science, 2016, 7, 2157-2161.	7.4	46
47	Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties. Journal of the American Chemical Society, 2015, 137, 14952-14958.	13.7	130
48	Self-assembly of DNA Nanohydrogels with Controllable Size and Stimuli-Responsive Property for Targeted Gene Regulation Therapy. Journal of the American Chemical Society, 2015, 137, 1412-1415.	13.7	406
49	A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells. Journal of the American Chemical Society, 2015, 137, 4900-4903.	13.7	288
50	Self-Assembled DNA Immunonanoflowers as Multivalent CpG Nanoagents. ACS Applied Materials & Interfaces, 2015, 7, 24069-24074.	8.0	101
51	DNA "Nano-Clawâ€ŧ Logic-Based Autonomous Cancer Targeting and Therapy. Journal of the American Chemical Society, 2014, 136, 1256-1259.	13.7	210
52	Cell Membrane-Anchored Biosensors for Real-Time Monitoring of the Cellular Microenvironment. Journal of the American Chemical Society, 2014, 136, 13090-13093.	13.7	142