Scott A Strobel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630074/publications.pdf

Version: 2024-02-01

102	6,281	44	77
papers	citations	h-index	g-index
108	108	108	4215 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	A new RNA performs old chemistry. Nature Chemical Biology, 2022, 18, 438-439.	8.0	3
2	The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants1. Plant Physiology, 2021, 186, 1143-1158.	4.8	11
3	The asymmetry and cooperativity of tandem glycine riboswitch aptamers. Rna, 2020, 26, 564-580.	3.5	12
4	Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in Saccharomyces cerevisiae. Frontiers in Microbiology, 2020, 11, 1410.	3. 5	9
5	A DNA Repair Inhibitor Isolated from an Ecuadorian Fungal Endophyte Exhibits Synthetic Lethality in PTEN-Deficient Glioblastoma. Journal of Natural Products, 2020, 83, 1899-1908.	3.0	2
6	The Positively Charged Active Site of the Bacterial Toxin RelE Causes a Large Shift in the General Base p <i>K</i> _a . Biochemistry, 2020, 59, 1665-1671.	2.5	4
7	Principles of fluoride toxicity and the cellular response: a review. Archives of Toxicology, 2020, 94, 1051-1069.	4.2	148
8	A Modular RNA Domain That Confers Differential Ligand Specificity. Biochemistry, 2020, 59, 1361-1366.	2.5	5
9	Structural Insights into the Roles of Water and the 2′ Hydroxyl of the P Site tRNA in the Peptidyl Transferase Reaction. journal of hand surgery Asian-Pacific volume, The, 2020, , 557-568.	0.4	0
10	Nitrate and Phosphate Transporters Rescue Fluoride Toxicity in Yeast. Chemical Research in Toxicology, 2019, 32, 2305-2319.	3.3	11
11	Enzymatic synthesis of cyclic dinucleotide analogs by a promiscuous cyclic-AMP-GMP synthetase and analysis of cyclic dinucleotide responsive riboswitches. Nucleic Acids Research, 2018, 46, 2765-2776.	14.5	23
12	Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching. Rna, 2018, 24, 1813-1827.	3.5	18
13	Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. ELife, 2018, 7, .	6.0	27
14	Structural basis for ligand binding to the guanidine-II riboswitch. Rna, 2017, 23, 1338-1343.	3.5	45
15	Mycofumigation through production of the volatile DNA-methylating agent N-methyl-N-nitrosoisobutyramide by fungi in the genus Muscodor. Journal of Biological Chemistry, 2017, 292, 7358-7371.	3.4	19
16	Structural Basis for Ligand Binding to the Guanidine-I Riboswitch. Structure, 2017, 25, 195-202.	3.3	62
17	Biatriospora (Ascomycota: Pleosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. Plant Systematics and Evolution, 2017, 303, 35-50.	0.9	33
18	Fluoride export (FEX) proteins from fungi, plants and animals are 'single barreled' channels containing one functional and one vestigial ion pore. PLoS ONE, 2017, 12, e0177096.	2.5	29

#	Article	IF	Citations
19	Genome of Diaporthe sp. provides insights into the potential inter-phylum transfer of a fungal sesquiterpenoid biosynthetic pathway. Fungal Biology, 2016, 120, 1050-1063.	2.5	13
20	Singlet glycine riboswitches bind ligand as well as tandem riboswitches. Rna, 2016, 22, 1728-1738.	3.5	19
21	Nuclease-Resistant c-di-AMP Derivatives That Differentially Recognize RNA and Protein Receptors. Biochemistry, 2016, 55, 837-849.	2.5	16
22	Pyrrolocin A, a 3-Decalinoyltetramic Acid with Selective Biological Activity, Isolated from Amazonian Cultures of the Novel Endophyte Diaporthales sp. E6927E. Natural Product Communications, 2015, 10, 1934578X1501001.	0.5	3
23	The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador. Journal of Fungi (Basel, Switzerland), 2015, 1, 384-396.	3.5	8
24	Stelliosphaerols A and B, Sesquiterpene–Polyol Conjugates from an Ecuadorian Fungal Endophyte. Journal of Natural Products, 2015, 78, 3005-3010.	3.0	16
25	Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases. Journal of Biological Chemistry, 2015, 290, 8511-8526.	3.4	66
26	Mycofumigation by the Volatile Organic Compound-Producing Fungus Muscodor albus Induces Bacterial Cell Death through DNA Damage. Applied and Environmental Microbiology, 2015, 81, 1147-1156.	3.1	53
27	Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinnonii E5202H. Applied Microbiology and Biotechnology, 2015, 99, 3715-3728.	3.6	44
28	Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Applied Microbiology and Biotechnology, 2015, 99, 4943-4951.	3.6	25
29	Fusaric acid induces a notochord malformation in zebrafish via copper chelation. BioMetals, 2015, 28, 783-789.	4.1	25
30	Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains. Journal of Biological Chemistry, 2015, 290, 19874-19887.	3.4	31
31	Transition State Charge Stabilization and Acid–Base Catalysis of mRNA Cleavage by the Endoribonuclease RelE. Biochemistry, 2015, 54, 7048-7057.	2.5	14
32	Pyrrolocin A, a 3-Decalinoyltetramic Acid with Selective Biological Activity, Isolated from Amazonian Cultures of the Novel Endophyte Diaporthales sp. E6927E. Natural Product Communications, 2015, 10, 1649-54.	0.5	2
33	Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. Rna, 2014, 20, 1775-1788.	3.5	27
34	Thin Layer Chromatography. Methods in Enzymology, 2013, 533, 303-324.	1.0	37
35	Bacterial Toxin RelE: A Highly Efficient Ribonuclease with Exquisite Substrate Specificity Using Atypical Catalytic Residues. Biochemistry, 2013, 52, 8633-8642.	2.5	47
36	Metal ghosts in the splicing machine. Nature, 2013, 503, 201-202.	27.8	6

#	Article	IF	Citations
37	Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19018-19023.	7.1	108
38	Student-Directed Discovery of the Plant Microbiome and Its Products. Science, 2012, 338, 485-486.	12.6	58
39	Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides. PLoS Genetics, 2012, 8, e1002558.	3.5	76
40	Analysis of Enzymatic Transacylase BrÃ, nsted Studies with Application to the Ribosome. Accounts of Chemical Research, 2012, 45, 495-503.	15.6	11
41	Minimal Transition State Charge Stabilization of the Oxyanion during Peptide Bond Formation by the Ribosome. Biochemistry, 2011, 50, 10491-10498.	2.5	19
42	glmS Riboswitch Binding to the Glucosamine-6-phosphate \hat{l} ±-Anomer Shifts the p <i>K</i> _a toward Neutrality. Biochemistry, 2011, 50, 7236-7242.	2.5	42
43	A two-step chemical mechanism for ribosome-catalysed peptide bond formation. Nature, 2011, 476, 236-239.	27.8	69
44	Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch. Chemistry and Biology, 2011, 18, 293-298.	6.0	90
45	The chemical versatility of RNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2929-2935.	4.0	26
46	Competencies: A Cure for Pre-Med Curriculum. Science, 2011, 334, 760-761.	12.6	2
47	Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch. Rna, 2011, 17, 74-84.	3.5	33
48	Endophyte Strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology, 2010, 1, 187-194.	4.4	21
49	Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology (United Kingdom), 2010, 156, 3814-3829.	1.8	72
50	Transition States of Uncatalyzed Hydrolysis and Aminolysis Reactions of a Ribosomal P-Site Substrate Determined by Kinetic Isotope Effects. Biochemistry, 2010, 49, 3868-3878.	2.5	12
51	Multiple, Novel Biologically Active Endophytic Actinomycetes Isolated from Upper Amazonian Rainforests. Microbial Ecology, 2009, 58, 374-383.	2.8	52
52	Structural basis of ligand binding by a c-di-GMP riboswitch. Nature Structural and Molecular Biology, 2009, 16, 1218-1223.	8.2	257
53	Structural and Chemical Basis for Glucosamine 6-Phosphate Binding and Activation of the <i>glmS</i> Ribozyme. Biochemistry, 2009, 48, 3239-3246.	2.5	78
54	Nucleotide Analog Interference Mapping. Methods in Enzymology, 2009, 468, 3-30.	1.0	17

#	Article	IF	Citations
55	Chemical basis of glycine riboswitch cooperativity. Rna, 2008, 14, 25-34.	3.5	72
56	An Uncharged Amine in the Transition State of the Ribosomal Peptidyl Transfer Reaction. Chemistry and Biology, 2008, 15, 493-500.	6.0	44
57	Catalytic Strategies of Self-Cleaving Ribozymes. Accounts of Chemical Research, 2008, 41, 1027-1035.	15.6	151
58	Transition State Chirality and Role of the Vicinal Hydroxyl in the Ribosomal Peptidyl Transferase Reaction. Biochemistry, 2008, 47, 8822-8827.	2.5	15
59	Riboswitch effectors as protein enzyme cofactors. Rna, 2008, 14, 993-1002.	3.5	44
60	Bioactive Endophytes Warrant Intensified Exploration and Conservation. PLoS ONE, 2008, 3, e3052.	2.5	98
61	RNA Catalysis: Ribozymes, Ribosomes and Riboswitches. FASEB Journal, 2008, 22, 109.1.	0.5	0
62	Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core. Journal of Molecular Biology, 2007, 372, 89-102.	4.2	49
63	RNA catalysis: ribozymes, ribosomes, and riboswitches. Current Opinion in Chemical Biology, 2007, 11, 636-643.	6.1	101
64	Structural Investigation of the GlmS Ribozyme Bound to Its Catalytic Cofactor. Chemistry and Biology, 2007, 14, 97-105.	6.0	253
65	Plant endophytes as a platform for discovery-based undergraduate science education. Nature Chemical Biology, 2007, 3, 356-359.	8.0	31
66	Toward Ribosomal RNA Catalytic Activity in the Absence of Protein. Journal of Molecular Evolution, 2007, 64, 472-483.	1.8	38
67	Mechanisms of RNA Catalysis. FASEB Journal, 2007, 21, A41.	0.5	O
68	Regiospecificity of the Peptidyl tRNA Ester within the Ribosomal P Site. Journal of the American Chemical Society, 2006, 128, 3108-3109.	13.7	25
69	RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Current Opinion in Structural Biology, 2006, 16, 319-326.	5.7	90
70	An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature, 2005, 438, 520-524.	27.8	326
71	Structural Evidence for a Two-Metal-Ion Mechanism of Group I Intron Splicing. Science, 2005, 309, 1587-1590.	12.6	205
72	Kinetic Isotope Effect Analysis of the Ribosomal Peptidyl Transferase Reactionâ€. Biochemistry, 2005, 44, 4018-4027.	2.5	39

#	Article	IF	CITATIONS
73	Uncovering the Enzymatic pKaof the Ribosomal Peptidyl Transferase Reaction Utilizing a Fluorinated Puromycin Derivativeâ€. Biochemistry, 2005, 44, 6675-6684.	2.5	32
74	Structural Insights into the Roles of Water and the 2′ Hydroxyl of the P Site tRNA in the Peptidyl Transferase Reaction. Molecular Cell, 2005, 20, 437-448.	9.7	253
75	RNA kink turns to the left and to the right. Rna, 2004, 10, 1852-1854.	3.5	39
76	Crystal structure of a group I intron splicing intermediate. Rna, 2004, 10, 1867-1887.	3.5	112
77	Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature Structural and Molecular Biology, 2004, 11, 1101-1106.	8.2	264
78	Crystal structure of a self-splicing group I intron with both exons. Nature, 2004, 430, 45-50.	27.8	431
79	Probing RNA Structure and Function by Nucleotide Analog Interference Mapping. Current Protocols in Nucleic Acid Chemistry, 2004, 17, Unit 6.9.	0.5	9
80	Biochemical detection of adenosine and cytidine ionization within RNA by interference analysis. Nucleic Acids Symposium Series, 2003, 3, 229-230.	0.3	3
81	Identification of an Active Site Ligand for a Group I Ribozyme Catalytic Metal Ionâ€. Biochemistry, 2002, 41, 2516-2525.	2.5	46
82	Identification of A-Minor Tertiary Interactions within a Bacterial Group I Intron Active Site by 3-Deazaadenosine Interference Mapping. Biochemistry, 2002, 41, 10426-10438.	2.5	24
83	Important Contribution to Catalysis of Peptide Bond Formation by a Single Ionizing Group within the Ribosome. Molecular Cell, 2002, 10, 339-346.	9.7	152
84	A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nature Structural Biology, 2002, 9, 225-30.	9.7	108
85	The hairpin's turn. Nature, 2001, 410, 761-762.	27.8	7
86	Repopulating the RNA world. Nature, 2001, 411, 1003-1005.	27.8	45
87	SITE SPECIFIC INCORPORATION OF 6-AZAURIDINE INTO THE GENOMIC HDV RIBOZYME ACTIVE SITE. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1851-1858.	1.1	10
88	[6] Chemical probing of RNA by nucleotide analog interference mapping. Methods in Enzymology, 2000, 317, 92-109.	1.0	57
89	A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme 1 1Edited by D. Draper. Journal of Molecular Biology, 2000, 302, 339-358.	4.2	48
90	A Single Adenosine with a Neutral pKa in the Ribosomal Peptidyl Transferase Center. Science, 2000, 289, 947-950.	12.6	243

SCOTT A STROBEL

#	Article	IF	CITATION
91	Biochemical Detection of Cytidine Protonation within RNA. Journal of the American Chemical Society, 2000, 122, 10259-10267.	13.7	24
92	Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4–P6 domain. Rna, 1999, 5, 1399-1407.	3.5	60
93	A chemogenetic approach to RNA function/structure analysis. Current Opinion in Structural Biology, 1999, 9, 346-352.	5.7	55
94	Nucleotide Analog Interference Mapping. Methods, 1999, 18, 38-50.	3.8	75
95	A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nature Structural Biology, 1998, 5, 986-992.	9.7	199
96	Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nature Structural Biology, 1998, 5, 60-66.	9.7	110
97	A minor groove RNA triple helix within the catalytic core of a group I intron. Nature Structural Biology, 1998, 5, 1037-1042.	9.7	82
98	Ribozyme chemogenetics., 1998, 48, 65-81.		14
99	N2-Methylguanosine is iso-energetic with guanosine in RNA duplexes and GNRA tetraloops. Nucleic Acids Research, 1998, 26, 3640-3644.	14.5	46
100	The Synthesis of RNA Containing the Modified Nucleotides <i>N</i> ² -Methylguanosine and <i>N</i> ⁶ , <i>N</i> ⁶ -Dimethyladenosine. Nucleosides & Nucleotides, 1998, 17, 2281-2288.	0.5	8
101	The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. Rna, 1998, 4, 498-519.	3.5	95
102	The 2,6-Diaminopurine Riboside.cntdot.5-Methylisocytidine Wobble Base Pair: An Isoenergetic Substitution for the Study of G.cntdot.U Pairs in RNA. Biochemistry, 1994, 33, 13824-13835.	2.5	93