Benjamin M Swarts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630051/publications.pdf Version: 2024-02-01

RENIAMIN M SWADTS

#	Article	IF	CITATIONS
1	Probing the Mycobacterial Trehalome with Bioorthogonal Chemistry. Journal of the American Chemical Society, 2012, 134, 16123-16126.	13.7	151
2	Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiology Reviews, 2015, 39, 184-202.	8.6	123
3	Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria. ELife, 2018, 7, .	6.0	94
4	Bioorthogonal Chemical Reporters for Selective Inâ€Situ Probing of Mycomembrane Components in Mycobacteria. Angewandte Chemie - International Edition, 2016, 55, 2053-2057.	13.8	87
5	Glycosylation of <scp>KEAP</scp> 1 links nutrient sensing to redox stress signaling. EMBO Journal, 2017, 36, 2233-2250.	7.8	82
6	Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nature Communications, 2019, 10, 2928.	12.8	74
7	Deoxyfluoro- <scp>d</scp> -trehalose (FDTre) analogues as potential PET probes for imaging mycobacterial infection. Organic and Biomolecular Chemistry, 2016, 14, 8598-8609.	2.8	56
8	Tailoring trehalose for biomedical and biotechnological applications. Pure and Applied Chemistry, 2017, 89, 1223-1249.	1.9	48
9	Chemoenzymatic Synthesis of Trehalose Analogues: Rapid Access to Chemical Probes for Investigating Mycobacteria. ChemBioChem, 2014, 15, 2066-2070.	2.6	47
10	Photoactivatable Glycolipid Probes for Identifying Mycolate–Protein Interactions in Live Mycobacteria. Journal of the American Chemical Society, 2020, 142, 7725-7731.	13.7	45
11	Chemical Reporters for Bacterial Glycans: Development and Applications. Chemical Reviews, 2022, 122, 3336-3413.	47.7	45
12	The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis. Carbohydrate Research, 2017, 450, 60-66.	2.3	39
13	Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues. ChemBioChem, 2019, 20, 1282-1291.	2.6	32
14	Chemoenzymatic radiosynthesis of 2-deoxy-2-[18F]fluoro-d-trehalose ([18F]-2-FDTre): A PET radioprobe for in vivo tracing of trehalose metabolism. Carbohydrate Research, 2019, 472, 16-22.	2.3	29
15	A FRET-Based Fluorogenic Trehalose Dimycolate Analogue for Probing Mycomembrane-Remodeling Enzymes of Mycobacteria. ACS Omega, 2019, 4, 4348-4359.	3.5	28
16	A chemical reporter strategy for detecting and identifying O-mycoloylated proteins in Corynebacterium. Chemical Communications, 2016, 52, 13795-13798.	4.1	27
17	Hepatic arginase 2 (Arg2) is sufficient to convey the therapeutic metabolic effects of fasting. Nature Communications, 2019, 10, 1587.	12.8	25
18	Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice. Gastroenterology, 2020, 158, 1402-1416.e2.	1.3	23

BENJAMIN M SWARTS

#	Article	IF	CITATIONS
19	Degradation-resistant trehalose analogues block utilization of trehalose by hypervirulent Clostridioides difficile. Chemical Communications, 2019, 55, 5009-5012.	4.1	22
20	Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPARÎ ³ . JCI Insight, 2018, 3, .	5.0	21
21	Chemoenzymatic Synthesis of Trehalosamine, an Aminoglycoside Antibiotic and Precursor to Mycobacterial Imaging Probes. Journal of Organic Chemistry, 2018, 83, 8662-8667.	3.2	17
22	Trehalose Recycling Promotes Energy-Efficient Biosynthesis of the Mycobacterial Cell Envelope. MBio, 2021, 12, .	4.1	17
23	Validamycin A Delays Development and Prevents Flight in Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2020, 57, 1096-1103.	1.8	17
24	The role of chemoenzymatic synthesis in advancing trehalose analogues as tools for combatting bacterial pathogens. Chemical Communications, 2020, 56, 11528-11547.	4.1	14
25	Bioorthogonal Chemical Reporters for Selective Inâ€Situ Probing of Mycomembrane Components in Mycobacteria. Angewandte Chemie, 2016, 128, 2093-2097.	2.0	12
26	PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis. Scientific Reports, 2022, 12, 2097.	3.3	12
27	Rapid One-step Enzymatic Synthesis and All-aqueous Purification of Trehalose Analogues. Journal of Visualized Experiments, 2017, , .	0.3	11
28	Chemical probes for tagging mycobacterial lipids. Current Opinion in Chemical Biology, 2021, 65, 57-65.	6.1	11
29	A trifunctional cyclooctyne for modifying azide-labeled biomolecules with photocrosslinking and affinity tags. Chemical Communications, 2015, 51, 17600-17603.	4.1	9
30	Ferrier Carbocyclization-Mediated Synthesis of Enantiopure Azido Inositol Analogues. Journal of Organic Chemistry, 2020, 85, 3182-3191.	3.2	7
31	Recent Advances in the Chemical Synthesis of Glycosylphosphatidylinositols (GPIs): Expanding Synthetic Versatility for Investigating GPI Biology. Journal of Carbohydrate Chemistry, 2013, 32, 275-300.	1.1	4
32	Effect of Azide Position on the Rate of Azido Glucose–Cyclooctyne Cycloaddition. Journal of Carbohydrate Chemistry, 2014, 33, 408-419.	1.1	3
33	Metabolic Labeling of Live Mycobacteria with Trehalose-Based Probes. Methods in Molecular Biology, 2021, 2314, 385-398.	0.9	3