Omid Tavana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1629608/publications.pdf Version: 2024-02-01

ΟΜΙΟ ΤΑΥΛΝΑ

#	Article	IF	CITATIONS
1	Systematic Pan-Cancer Characterization of Nuclear Receptors Identifies Potential Cancer Biomarkers and Therapeutic Targets. Cancer Research, 2022, 82, 46-59.	0.9	3
2	Systematic illumination of druggable genes in cancer genomes. Cell Reports, 2022, 38, 110400.	6.4	14
3	Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene, 2022, 41, 3039-3050.	5.9	20
4	The Cancer Surfaceome Atlas integrates genomic, functional and drug response data to identify actionable targets. Nature Cancer, 2021, 2, 1406-1422.	13.2	33
5	AZD4320, A Dual Inhibitor of Bcl-2 and Bcl-xL, Induces Tumor Regression in Hematologic Cancer Models without Dose-limiting Thrombocytopenia. Clinical Cancer Research, 2020, 26, 6535-6549.	7.0	42
6	Discovery of Proteolysis-Targeting Chimera Molecules that Selectively Degrade the IRAK3 Pseudokinase. Journal of Medicinal Chemistry, 2020, 63, 10460-10473.	6.4	28
7	p53 modifications: exquisite decorations of the powerful guardian. Journal of Molecular Cell Biology, 2019, 11, 564-577.	3.3	260
8	The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11. Cancer Research, 2019, 79, 1913-1924.	0.9	263
9	ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nature Cell Biology, 2019, 21, 579-591.	10.3	486
10	Targeting HAUSP in both p53 wildtype and p53-mutant tumors. Cell Cycle, 2018, 17, 823-828.	2.6	17
11	ARF–NRF2: A new checkpoint for oxidative stress responses?. Molecular and Cellular Oncology, 2018, 5, e1432256.	0.7	11
12	Peli1 Modulates the Subcellular Localization and Activity of Mdmx. Cancer Research, 2018, 78, 2897-2910.	0.9	18
13	Independent functions of DNMT1 and USP7 at replication foci. Epigenetics and Chromatin, 2018, 11, 9.	3.9	17
14	Combination of AZD4573, a Selective CDK9 Inhibitor, with Other Cell Death Inducing Agents Can Overcome De Novo Venetoclax Resistance in Preclinical Hematologic Tumor Models. Blood, 2018, 132, 3946-3946.	1.4	0
15	The "readers―of unacetylated p53 represent a new class of acidic domain proteins. Nucleus, 2017, 8, 360-369.	2.2	12
16	Modulation of the p53/MDM2 interplay by HAUSP inhibitors. Journal of Molecular Cell Biology, 2017, 9, 45-52.	3.3	75
17	NRF2 Is a Major Target of ARF in p53-Independent Tumor Suppression. Molecular Cell, 2017, 68, 224-232.e4.	9.7	219
18	HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nature Medicine, 2016, 22, 1180-1186.	30.7	158

Omid Tavana

#	Article	IF	CITATIONS
19	Controlling ARF stability. Cell Cycle, 2014, 13, 497-498.	2.6	3
20	The Hunger Games: p53 Regulates Metabolism upon Serine Starvation. Cell Metabolism, 2013, 17, 159-161.	16.2	15
21	Ku70 Functions in Addition to Nonhomologous End Joining in Pancreatic β-Cells. Diabetes, 2013, 62, 2429-2438.	0.6	12
22	p53 and DNA methylation suppress the TRAIN to cell death. Cell Cycle, 2013, 12, 9-10.	2.6	4
23	p53-Mediated Senescence Impairs the Apoptotic Response to Chemotherapy and Clinical Outcome in Breast Cancer. Cancer Cell, 2012, 21, 793-806.	16.8	279
24	Too many breaks (brakes): Pancreatic β-cell senescence leads to diabetes. Cell Cycle, 2011, 10, 2471-2484.	2.6	29
25	Absence of p53-Dependent Apoptosis Combined With Nonhomologous End-Joining Deficiency Leads to a Severe Diabetic Phenotype in Mice. Diabetes, 2010, 59, 135-142.	0.6	46
26	Absence of p53-dependent apoptosis leads to UV radiation hypersensitivity, enhanced immunosuppression and cellular senescence. Cell Cycle, 2010, 9, 3348-3356.	2.6	50