Patrick Heun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1628961/publications.pdf

Version: 2024-02-01

38 2,823 21 34 g-index

43 43 43 43 2862

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Seminars in Cell and Developmental Biology, 2023, 135, 24-34.	5.0	8
2	Spt6 is a maintenance factor for centromeric CENP-A. Nature Communications, 2020, 11, 2919.	12.8	30
3	Structural basis for centromere maintenance by <i>Drosophila</i> <scp>CENP</scp> â€A chaperone <scp>CAL</scp> 1. EMBO Journal, 2020, 39, e103234.	7.8	29
4	Drosophila SWR1 and NuA4 complexes are defined by DOMINO isoforms. ELife, 2020, 9, .	6.0	14
5	Human Artificial Chromosomes that Bypass Centromeric DNA. Cell, 2019, 178, 624-639.e19.	28.9	74
6	Reconstituting Drosophila Centromere Identity in Human Cells. Cell Reports, 2019, 29, 464-479.e5.	6.4	24
7	Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. Journal of Cell Biology, 2018, 217, 1957-1972.	5.2	104
8	High-resolution mapping of centromeric protein association using APEX-chromatin fibers. Epigenetics and Chromatin, $2018,11,68.$	3.9	18
9	Oligomerization of Drosophila Nucleoplasmin-Like Protein is required for its centromere localization. Nucleic Acids Research, 2018, 46, 11274-11286.	14.5	10
10	Artificial Chromosomes and Strategies to Initiate Epigenetic Centromere Establishment. Progress in Molecular and Subcellular Biology, 2017, 56, 193-212.	1.6	9
11	Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1. FASEB Journal, 2015, 29, 1973-1985.	0.5	9
12	Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. Journal of Cell Biology, 2015, 208, 521-531.	5.2	97
13	Identification of Drosophila centromere associated proteins by quantitative affinity purification-mass spectrometry. Data in Brief, 2015, 4, 544-550.	1.0	8
14	CAL1 is the <i>Drosophila</i> CENP-A assembly factor. Journal of Cell Biology, 2014, 204, 313-329.	5.2	128
15	Nucleolus and nuclear periphery: Velcro for heterochromatin. Current Opinion in Cell Biology, 2014, 28, 54-60.	5.4	148
16	Identification of novel <i>Drosophila</i> centromereâ€associated proteins. Proteomics, 2014, 14, 2167-2178.	2.2	28
17	Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Research, 2013, 21, 101-106.	2.2	37
18	A Pair of Centromeric Proteins Mediates Reproductive Isolation in Drosophila Species. Developmental Cell, 2013, 27, 412-424.	7.0	71

#	Article	IF	Citations
19	The Nucleoplasmin Homolog NLP Mediates Centromere Clustering and Anchoring to the Nucleolus. Molecular Cell, 2013, 50, 236-249.	9.7	87
20	Centromeres in nuclear architecture. Cell Cycle, 2013, 12, 3455-3456.	2.6	6
21	Blind Deconvolution of Widefield Fluorescence Microscopic Data by Regularization of the Optical Transfer Function (OTF)., 2013,,.		9
22	Blind deconvolution with PSF regularization for wide-field microscopy. , 2012, , .		3
23	Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nature Cell Biology, 2011, 13, 799-808.	10.3	114
24	<i>Drosophila</i> CENH3 Is Sufficient for Centromere Formation. Science, 2011, 334, 686-690.	12.6	252
25	Mean Shift Gradient Vector Flow: A Robust External Force Field for 3D Active Surfaces., 2010, , .		1
26	Roles for nuclear organization in the maintenance of genome stability. Epigenomics, 2010, 2, 289-305.	2.1	24
27	3D Deformable Surfaces with Locally Self-Adjusting Parameters - A Robust Method to Determine Cell Nucleus Shapes. , 2010, , .		8
28	The paracentric inversion In(2Rh)PL alters the centromeric organization of chromosome 2 in Drosophila melanogaster. Chromosome Research, 2009, 17, 1-9.	2.2	2
29	A 3D Active Surface Model for the Accurate Segmentation of Drosophila Schneider Cell Nuclei and Nucleoli. Lecture Notes in Computer Science, 2009, , 865-874.	1.3	5
30	SUMOrganization of the nucleus. Current Opinion in Cell Biology, 2007, 19, 350-355.	5.4	130
31	Mislocalization of the Drosophila Centromere-Specific Histone CID Promotes Formation of Functional Ectopic Kinetochores. Developmental Cell, 2006, 10, 303-315.	7.0	319
32	Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16495-16500.	7.1	274
33	Chromosome Dynamics in the Yeast Interphase Nucleus. Science, 2001, 294, 2181-2186.	12.6	431
34	From snapshots to moving pictures: new perspectives on nuclear organization. Trends in Cell Biology, 2001, 11, 519-525.	7.9	36
35	The Positioning and Dynamics of Origins of Replication in the Budding Yeast Nucleus. Journal of Cell Biology, 2001, 152, 385-400.	5.2	178
36	MAP kinase signaling induces nuclear reorganization in budding yeast. Current Biology, 2000, 10, 373-382.	3.9	42

PATRICK HEUN

#	Article	IF	CITATIONS
37	Cyclin B-Cdk1 Kinase Stimulates ORC- and Cdc6-Independent Steps of Semiconservative Plasmid Replication in Yeast Nuclear Extracts. Molecular and Cellular Biology, 1999, 19, 1226-1241.	2.3	24
38	Semi-conservative replication in yeast nuclear extracts requires Dna2 helicase and supercoiled template 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1998, 281, 631-649.	4.2	28