
## Kathleen E Mandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627594/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                  | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | INMS-derived composition of Titan's upper atmosphere: Analysis methods and model comparison.<br>Planetary and Space Science, 2009, 57, 1895-1916.                                                                                                                                        | 1.7 | 152       |
| 2  | Origin of the Medusae Fossae Formation, Mars: Insights from a synoptic approach. Journal of<br>Geophysical Research, 2008, 113, .                                                                                                                                                        | 3.3 | 141       |
| 3  | Heavy ions, temperatures and winds in Titan's ionosphere: Combined Cassini CAPS and INMS observations. Planetary and Space Science, 2009, 57, 1847-1856.                                                                                                                                 | 1.7 | 113       |
| 4  | On the amount of heavy molecular ions in Titan's ionosphere. Planetary and Space Science, 2009, 57, 1857-1865.                                                                                                                                                                           | 1.7 | 96        |
| 5  | ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING. Astrophysical Journal, 2012, 749, 159.                                                                                                                                                                                    | 4.5 | 91        |
| 6  | Interplanetary coronal mass ejection observed at STEREOâ€A, Mars, comet 67P/Churyumovâ€Gerasimenko,<br>Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and<br>9.9ÂAU. Journal of Geophysical Research: Space Physics, 2017, 122, 7865-7890. | 2.4 | 87        |
| 7  | Yardangs in terrestrial ignimbrites: Synergistic remote and field observations on Earth with applications to Mars. Planetary and Space Science, 2010, 58, 459-471.                                                                                                                       | 1.7 | 84        |
| 8  | Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A20.                                                                                                                                                                         | 5.1 | 76        |
| 9  | Ionospheric plasma of comet 67P probed by <i>Rosetta</i> at 3Âau from the Sun. Monthly Notices of the<br>Royal Astronomical Society, 2016, 462, S331-S351.                                                                                                                               | 4.4 | 75        |
| 10 | PROTOSOLAR AMMONIA AS THE UNIQUE SOURCE OF TITAN's NITROGEN. Astrophysical Journal Letters, 2014, 788, L24.                                                                                                                                                                              | 8.3 | 74        |
| 11 | Spatial distribution of lowâ€energy plasma around comet 67P/CG from Rosetta measurements.<br>Geophysical Research Letters, 2015, 42, 4263-4269.                                                                                                                                          | 4.0 | 74        |
| 12 | Titan's thermospheric response to various plasma environments. Journal of Geophysical Research, 2011, 116, .                                                                                                                                                                             | 3.3 | 73        |
| 13 | Negative ion densities in the ionosphere of Titan–Cassini RPWS/LP results. Planetary and Space<br>Science, 2013, 84, 153-162.                                                                                                                                                            | 1.7 | 73        |
| 14 | Structure of Titan's ionosphere: Model comparisons with Cassini data. Planetary and Space Science,<br>2009, 57, 1834-1846.                                                                                                                                                               | 1.7 | 68        |
| 15 | lon densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass<br>Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model<br>simulations. Journal of Geophysical Research, 2012, 117, .                      | 3.3 | 67        |
| 16 | Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS.<br>Astronomy and Astrophysics, 2015, 583, A4.                                                                                                                                                      | 5.1 | 67        |
| 17 | THE <sup>12</sup> C/ <sup>13</sup> C RATIO ON TITAN FROM <i>CASSINI</i> INMS MEASUREMENTS AND IMPLICATIONS FOR THE EVOLUTION OF METHANE. Astrophysical Journal, 2012, 749, 160.                                                                                                          | 4.5 | 66        |
| 18 | lsotopic evolution of the major constituents of Titan's atmosphere based on Cassini data. Planetary<br>and Space Science, 2009, 57, 1917-1930.                                                                                                                                           | 1.7 | 63        |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | RPC observation of the development and evolution of plasma interaction boundaries at<br>67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S9-S22.           | 4.4  | 62        |
| 20 | Characterizing cometary electrons with kappa distributions. Journal of Geophysical Research: Space Physics, 2016, 121, 7407-7422.                                                                  | 2.4  | 62        |
| 21 | Titan's ionospheric composition and structure: Photochemical modeling of Cassini INMS data. Journal of Geophysical Research, 2012, 117, .                                                          | 3.3  | 60        |
| 22 | The carbon monoxide-rich interstellar comet 2I/Borisov. Nature Astronomy, 2020, 4, 867-871.                                                                                                        | 10.1 | 60        |
| 23 | ORIGIN OF MOLECULAR OXYGEN IN COMET 67P/CHURYUMOV–GERASIMENKO. Astrophysical Journal Letters, 2016, 823, L41.                                                                                      | 8.3  | 58        |
| 24 | A Revised Sensitivity Model for Cassini INMS: Results at Titan. Space Science Reviews, 2015, 190, 47-84.                                                                                           | 8.1  | 54        |
| 25 | Suprathermal electron environment of comet 67P/Churyumov-Gerasimenko: Observations from the Rosetta Ion and Electron Sensor. Astronomy and Astrophysics, 2015, 583, A24.                           | 5.1  | 51        |
| 26 | Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey.<br>Planetary and Space Science, 2019, 177, 104680.                                                   | 1.7  | 50        |
| 27 | Suprathermal electrons near the nucleus of comet 67P/Churyumovâ€Gerasimenko at 3 AU: Model<br>comparisons with Rosetta data. Journal of Geophysical Research: Space Physics, 2016, 121, 5815-5836. | 2.4  | 49        |
| 28 | Rosetta observations of solar wind interaction with the comet 67P/Churyumov-Gerasimenko.<br>Astronomy and Astrophysics, 2015, 583, A21.                                                            | 5.1  | 48        |
| 29 | Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko. Annales<br>Geophysicae, 2016, 34, 1-15.                                                                           | 1.6  | 46        |
| 30 | The Rosetta Ion and Electron Sensor (IES) measurement of the development of pickup ions from comet 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters, 2015, 42, 3093-3099.                  | 4.0  | 45        |
| 31 | Statistical analysis of suprathermal electron drivers at 67P/Churyumov–Gerasimenko. Monthly<br>Notices of the Royal Astronomical Society, 2016, 462, S312-S322.                                    | 4.4  | 45        |
| 32 | Photochemistry on Pluto – I. Hydrocarbons and aerosols. Monthly Notices of the Royal Astronomical Society, 2017, 472, 104-117.                                                                     | 4.4  | 45        |
| 33 | ROSINA/DFMS and IES observations of 67P: Ion-neutral chemistry in the coma of a weakly outgassing comet. Astronomy and Astrophysics, 2015, 583, A2.                                                | 5.1  | 43        |
| 34 | CME impact on comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S45-S56.                                                                              | 4.4  | 42        |
| 35 | Distinct erosional progressions in the Medusae Fossae Formation, Mars, indicate contrasting environmental conditions. Icarus, 2009, 204, 471-477.                                                  | 2.5  | 40        |
| 36 | Developing a selfâ€consistent description of Titan's upper atmosphere without hydrodynamic escape.<br>Journal of Geophysical Research: Space Physics, 2014, 119, 4957-4972.                        | 2.4  | 38        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The presence of clathrates in comet 67P/Churyumov-Gerasimenko. Science Advances, 2016, 2, e1501781.                                                                                                                     | 10.3 | 38        |
| 38 | Photochemistry on Pluto: part II HCN and nitrogen isotope fractionation. Monthly Notices of the Royal Astronomical Society, 2017, 472, 118-128.                                                                         | 4.4  | 38        |
| 39 | Titan's cold case files - Outstanding questions after Cassini-Huygens. Planetary and Space Science, 2018, 155, 50-72.                                                                                                   | 1.7  | 37        |
| 40 | lsotopic composition of CO <sub>2</sub> in the coma of 67P/Churyumov-Gerasimenko measured with ROSINA/DFMS. Astronomy and Astrophysics, 2017, 605, A50.                                                                 | 5.1  | 35        |
| 41 | Simulating the oneâ€dimensional structure of Titan's upper atmosphere: 1. Formulation of the Titan<br>Global Ionosphereâ€Thermosphere Model and benchmark simulations. Journal of Geophysical Research,<br>2010, 115, . | 3.3  | 34        |
| 42 | Solar wind interaction with comet 67P: Impacts of corotating interaction regions. Journal of Geophysical Research: Space Physics, 2016, 121, 949-965.                                                                   | 2.4  | 33        |
| 43 | A primordial origin for the atmospheric methane of Saturn's moon Titan. Icarus, 2009, 204, 749-751.                                                                                                                     | 2.5  | 31        |
| 44 | 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan. Icarus, 2016, 270, 421-428.                                                                                    | 2.5  | 31        |
| 45 | Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere.<br>Icarus, 2017, 283, 31-37.                                                                                              | 2.5  | 30        |
| 46 | Lunar swirls: Far-UV characteristics. Icarus, 2016, 273, 68-74.                                                                                                                                                         | 2.5  | 29        |
| 47 | REMOVAL OF TITAN'S ATMOSPHERIC NOBLE GASES BY THEIR SEQUESTRATION IN SURFACE CLATHRATES.<br>Astrophysical Journal Letters, 2011, 740, L9.                                                                               | 8.3  | 28        |
| 48 | Charged particle signatures of the diamagnetic cavity of comet 67P/Churyumov–Gerasimenko.<br>Monthly Notices of the Royal Astronomical Society, 2016, 462, S415-S421.                                                   | 4.4  | 28        |
| 49 | Ion chemistry in the coma of comet 67P near perihelion. Monthly Notices of the Royal Astronomical Society, 2016, 462, S67-S77.                                                                                          | 4.4  | 28        |
| 50 | Simulating the oneâ€dimensional structure of Titan's upper atmosphere: 2. Alternative scenarios for<br>methane escape. Journal of Geophysical Research, 2010, 115, .                                                    | 3.3  | 27        |
| 51 | Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites.<br>Space Science Reviews, 2015, 197, 297-342.                                                                          | 8.1  | 25        |
| 52 | FORMATION CONDITIONS OF ENCELADUS AND ORIGIN OF ITS METHANE RESERVOIR. Astrophysical Journal, 2009, 701, L39-L42.                                                                                                       | 4.5  | 24        |
| 53 | Simulating the one-dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape. Journal of Geophysical Research, 2011, 116, .                                                           | 3.3  | 24        |
| 54 | lon and aerosol precursor densities in Titan's ionosphere: A multiâ€instrument case study. Journal of<br>Geophysical Research: Space Physics, 2016, 121, 10075-10090.                                                   | 2.4  | 23        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Origin of Molecular Oxygen in Comets: Current Knowledge and Perspectives. Space Science Reviews, 2018, 214, 1.                                                                                                                        | 8.1 | 23        |
| 56 | NEW INSIGHTS ON SATURN'S FORMATION FROM ITS NITROGEN ISOTOPIC COMPOSITION. Astrophysical Journal Letters, 2014, 796, L28.                                                                                                             | 8.3 | 22        |
| 57 | Ionization balance in Titan's nightside ionosphere. Icarus, 2015, 248, 539-546.                                                                                                                                                       | 2.5 | 22        |
| 58 | An empirical approach to modeling ion production rates in Titan's ionosphere I: Ion production rates on the dayside and globally. Journal of Geophysical Research: Space Physics, 2015, 120, 1264-1280.                               | 2.4 | 18        |
| 59 | Titan's ionosphere: A survey of solar EUV influences. Journal of Geophysical Research: Space Physics, 2017, 122, 7491-7503.                                                                                                           | 2.4 | 17        |
| 60 | On the possible noble gas deficiency of Pluto's atmosphere. Icarus, 2013, 225, 856-861.                                                                                                                                               | 2.5 | 16        |
| 61 | Effects of Space Weathering and Porosity on the Farâ€UV Reflectance of Amundsen Crater. Journal of<br>Geophysical Research E: Planets, 2019, 124, 823-836.                                                                            | 3.6 | 16        |
| 62 | Cold Traps of Hypervolatiles in the Protosolar Nebula at the Origin of the Peculiar Composition of Comet C/2016 R2 (PanSTARRS). Planetary Science Journal, 2021, 2, 72.                                                               | 3.6 | 16        |
| 63 | Investigating magnetospheric interaction effects on Titan's ionosphere with the Cassini orbiter Ion<br>Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys.<br>Icarus, 2012, 219, 534-555. | 2.5 | 15        |
| 64 | Science goals and mission concept for the future exploration of Titan and Enceladus. Planetary and<br>Space Science, 2014, 104, 59-77.                                                                                                | 1.7 | 15        |
| 65 | LRO-LAMP detection of geologically young craters within lunar permanently shaded regions. Icarus, 2016, 273, 114-120.                                                                                                                 | 2.5 | 15        |
| 66 | The Fundamental Connections between the Solar System and Exoplanetary Science. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006643.                                                                                  | 3.6 | 15        |
| 67 | The source of heavy organics and aerosols in Titan's atmosphere. Proceedings of the International Astronomical Union, 2008, 4, 321-326.                                                                                               | 0.0 | 14        |
| 68 | An empirical approach to modeling ion production rates in Titan's ionosphere II: Ion production rates on the nightside. Journal of Geophysical Research: Space Physics, 2015, 120, 1281-1298.                                         | 2.4 | 14        |
| 69 | Key Atmospheric Signatures for Identifying the Source Reservoirs of Volatiles in Uranus and Neptune.<br>Space Science Reviews, 2020, 216, 1.                                                                                          | 8.1 | 14        |
| 70 | Investigation of the force balance in the Titan ionosphere: Cassini T5 flyby model/data comparisons.<br>Icarus, 2010, 210, 867-880.                                                                                                   | 2.5 | 13        |
| 71 | Comparative planetology of the history of nitrogen isotopes in the atmospheres of Titan and Mars.<br>Icarus, 2015, 254, 259-261.                                                                                                      | 2.5 | 13        |
| 72 | Tracing the Origins of the Ice Giants Through Noble Gas Isotopic Composition. Space Science Reviews, 2020, 216, 1.                                                                                                                    | 8.1 | 13        |

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Exogenic origin for the volatiles sampled by the Lunar CRater Observation and Sensing Satellite impact. Nature Communications, 2022, 13, 642.                                      | 12.8 | 13        |
| 74 | The observed composition of ions outflowing from Titan. Geophysical Research Letters, 2012, 39, .                                                                                  | 4.0  | 12        |
| 75 | The Case for a New Frontiers–Class Uranus Orbiter: System Science at an Underexplored and Unique<br>World with a Mid-scale Mission. Planetary Science Journal, 2022, 3, 58.        | 3.6  | 12        |
| 76 | SUBSURFACE CHARACTERIZATION OF 67P/CHURYUMOV–GERASIMENKO'S ABYDOS SITE. Astrophysical Journal, 2016, 822, 98.                                                                      | 4.5  | 11        |
| 77 | Noble Gas Abundance Ratios Indicate the Agglomeration of 67P/Churyumov–Gerasimenko from<br>Warmed-up Ice. Astrophysical Journal Letters, 2018, 865, L11.                           | 8.3  | 11        |
| 78 | The Far Ultraviolet Wavelength Dependence of the Lunar Phase Curve as Seen by LRO LAMP. Journal of<br>Geophysical Research E: Planets, 2018, 123, 2550-2563.                       | 3.6  | 11        |
| 79 | Nitrogen Atmospheres of the Icy Bodies in the Solar System. Space Science Reviews, 2020, 216, 1.                                                                                   | 8.1  | 11        |
| 80 | Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061<br>Perspective. Space Science Reviews, 2021, 217, 1.                         | 8.1  | 11        |
| 81 | Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System. Planetary<br>Science Journal, 2021, 2, 184.                                                  | 3.6  | 11        |
| 82 | Modeling Pluto's minimum pressure: Implications for haze production. Icarus, 2021, 356, 114070.                                                                                    | 2.5  | 10        |
| 83 | The Volatile Carbon-to-oxygen Ratio as a Tracer for the Formation Locations of Interstellar Comets.<br>Planetary Science Journal, 2022, 3, 150.                                    | 3.6  | 10        |
| 84 | EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN'S UPPER ATMOSPHERE. Astrophysical Journal Letters, 2015, 801, L14.        | 8.3  | 9         |
| 85 | Triton's Variable Interaction With Neptune's Magnetospheric Plasma. Journal of Geophysical Research:<br>Space Physics, 2021, 126, e2021JA029740.                                   | 2.4  | 9         |
| 86 | Hierarchical Bayesian Atmospheric Retrieval Modeling for Population Studies of Exoplanet<br>Atmospheres: A Case Study on the Habitable Zone. Astronomical Journal, 2022, 163, 140. | 4.7  | 9         |
| 87 | Comparisons of Cassini flybys of the Titan magnetospheric interaction with an MHD model: Evidence<br>for organized behavior at high altitudes. Icarus, 2012, 217, 43-54.           | 2.5  | 8         |
| 88 | Space Weather at Comet 67P/Churyumov–Gerasimenko Before its Perihelion. Earth, Moon and Planets, 2016, 117, 1-22.                                                                  | 0.6  | 8         |
| 89 | Comparison of neutral outgassing of comet 67P/Churyumov-Gerasimenko inbound and outbound beyond 3 AU from ROSINA/DFMS. Astronomy and Astrophysics, 2019, 630, A30.                 | 5.1  | 8         |
| 90 | Determining the origin of the building blocks of the Ice Giants based on analogue measurements from comets. Monthly Notices of the Royal Astronomical Society, 2020, 491, 488-494. | 4.4  | 8         |

| #   | Article                                                                                                                                                                                                                                          | IF                | CITATIONS        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|
| 91  | Escape and evolution of Titan's N2 atmosphere constrained by 14N/15N isotope ratios. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2020-2035.                                                                                    | 4.4               | 8                |
| 92  | Transmission Spectroscopy of the Earth–Sun System to Inform the Search for Extrasolar Life.<br>Planetary Science Journal, 2021, 2, 140.                                                                                                          | 3.6               | 8                |
| 93  | Dual storage and release of molecular oxygen in comet 67P/Churyumov–Gerasimenko. Nature<br>Astronomy, 2022, 6, 724-730.                                                                                                                          | 10.1              | 8                |
| 94  | A qualitative study of the retention and release of volatile gases in JSC-1A lunar soil simulant at room temperature under ultrahigh vacuum (UHV) conditions. Icarus, 2015, 255, 30-43.                                                          | 2.5               | 7                |
| 95  | Performance evaluation of a prototype multi-bounce time-of-flight mass spectrometer in linear mode and applications in space science. Planetary and Space Science, 2015, 117, 436-443.                                                           | 1.7               | 7                |
| 96  | THE ROLE OF NITROGEN IN TITAN'S UPPER ATMOSPHERIC HYDROCARBON CHEMISTRY OVER THE SOLAR<br>CYCLE. Astrophysical Journal, 2016, 823, 163.                                                                                                          | 4.5               | 6                |
| 97  | First in-situ detection of the cometary ammonium ion NH\$_4^{+}\$ (protonated ammonia NH) Tj ETQq1 1 0.784:<br>Society, 0, , stw3370.                                                                                                            | 314 rgBT ,<br>4.4 | Overlock 10<br>6 |
| 98  | FUV Observations of the Inner Coma of 46P/Wirtanen. Planetary Science Journal, 2021, 2, 8.                                                                                                                                                       | 3.6               | 6                |
| 99  | Two years of solar wind and pickup ion measurements at comet 67P/Churyumov–Gerasimenko.<br>Monthly Notices of the Royal Astronomical Society, 2017, 469, S262-S267.                                                                              | 4.4               | 5                |
| 100 | An Examination of Several Discrete Lunar Nearside Photometric Anomalies Observed in Lymanâ€Î± Maps.<br>Journal of Geophysical Research E: Planets, 2019, 124, 294-315.                                                                           | 3.6               | 5                |
| 101 | In Situ exploration of the giant planets. Experimental Astronomy, 2022, 54, 975-1013.                                                                                                                                                            | 3.7               | 5                |
| 102 | LRO/LAMP observations of the lunar helium exosphere: constraints on thermal accommodation and outgassing rate. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4438-4451.                                                          | 4.4               | 5                |
| 103 | Retrieving Exoplanet Atmospheres Using Planetary Infrared Excess: Prospects for the Night Side of WASP-43 b and Other Hot Jupiters. Astrophysical Journal Letters, 2021, 921, L4.                                                                | 8.3               | 5                |
| 104 | Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and<br>habitability: titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON).<br>Experimental Astronomy, 2022, 54, 911-973. | 3.7               | 5                |
| 105 | Isotopic constraints on the source of Pluto׳s nitrogen and the history of atmospheric escape.<br>Planetary and Space Science, 2016, 130, 104-109.                                                                                                | 1.7               | 4                |
| 106 | Influence of collisions on ion dynamics in the inner comae of four comets. Astronomy and Astrophysics, 2019, 630, A48.                                                                                                                           | 5.1               | 4                |
| 107 | The Role of Atmospheric Exchange in Falseâ€Positive Biosignature Detection. Journal of Geophysical<br>Research E: Planets, 2022, 127, .                                                                                                          | 3.6               | 4                |
| 108 | A prototype mass spectrometer for <i>in situ</i> analysis of cave atmospheres. Review of Scientific<br>Instruments, 2012, 83, 105116.                                                                                                            | 1.3               | 3                |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Comets as Tracers of Solar System Formation and Evolution. Space Science Reviews, 2015, 197, 5-7.                                                                        | 8.1 | 3         |
| 110 | Photoionization Modeling of Titan's Dayside Ionosphere. Astrophysical Journal Letters, 2017, 850, L26.                                                                   | 8.3 | 3         |
| 111 | Farâ€UV Observations of Lunar Rayed Craters with LRO‣AMP. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006269.                                          | 3.6 | 3         |
| 112 | Uncertainty for calculating transport on Titan: A probabilistic description of bimolecular diffusion parameters. Planetary and Space Science, 2015, 117, 377-384.        | 1.7 | 2         |
| 113 | Recent Advancements and Motivations of Simulated Pluto Experiments. Space Science Reviews, 2018, 214, 1.                                                                 | 8.1 | 2         |
| 114 | Looking Back is Looking Forward: The Need for Retrospective Solar System Observations in Advance of<br>Exoplanet Retrievals. , 2021, 53, .                               |     | 1         |
| 115 | The Value of a Dual Anonymous System for Reducing Bias in Reviews of Planetary Research and Analysis Proposals and Scientific Papers. , 2021, 53, .                      |     | 1         |
| 116 | The Science Case for Io Exploration. , 2021, 53, .                                                                                                                       |     | 1         |
| 117 | Lunar Volatiles and Solar System Science. , 2021, 53, .                                                                                                                  |     | 1         |
| 118 | On the Utility of Transmission Color Analysis i: Differentiating Super-Earths and Sub-Neptunes.<br>Astronomical Journal, 2021, 162, 168.                                 | 4.7 | 1         |
| 119 | Yardang. , 2014, , 1-10.                                                                                                                                                 |     | 0         |
| 120 | Yardang. , 2015, , 2339-2347.                                                                                                                                            |     | 0         |
| 121 | Planetary and Astrobiology Blank Papers: Science White Papers Cancelled or Downscaled Due to<br>Direct Impact of COVID-19 and National-scale Civil Action. , 2021, 53, . |     | Ο         |
| 122 | The Science Case for a Titan Flagship-class Orbiter with Probes. , 2021, 53, .                                                                                           |     | 0         |
| 123 | Recommendations for Addressing Priority Io Science in the Next Decade. , 2021, 53, .                                                                                     |     | 0         |
| 124 | Potential Ocean Worlds. , 2021, 53, .                                                                                                                                    |     | 0         |
| 125 | Plateau Degradation Landforms. , 2014, , 1-10.                                                                                                                           |     | Ο         |
| 126 | Plateau Degradation Landforms. , 2015, , 1587-1595.                                                                                                                      |     | 0         |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Comets as Tracers of Solar System Formation and Evolution. , 2017, , 5-7.                                                                                            |     | 0         |
| 128 | Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. , 2017, , 297-342.                                                  |     | 0         |
| 129 | TRAPPIST-1h as an Exo-Titan. I. The Role of Assumptions about Atmospheric Parameters in Understanding an Exoplanet Atmosphere. Astrophysical Journal, 2022, 930, 73. | 4.5 | Ο         |