Thomas F Shipley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627557/publications.pdf Version: 2024-02-01

THOMAS F SHIDLEV

#	Article	IF	CITATIONS
1	Variations in cognitive maps: Understanding individual differences in navigation Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 669-682.	0.9	172
2	Thinking About Spatial Thinking: New Typology, New Assessments. , 2015, , 179-192.		151
3	The Curious Construct of Active Learning. Psychological Science in the Public Interest: A Journal of the American Psychological Society, 2021, 22, 8-43.	10.7	112
4	Cognitive and psychological science insights to improve climate change data visualization. Nature Climate Change, 2016, 6, 1080-1089.	18.8	107
5	Evaluating Geoscience Students' Spatial Thinking Skills in a Multi-Institutional Classroom Study. Journal of Geoscience Education, 2014, 62, 146-154.	1.4	79
6	Twisting space: are rigid and non-rigid mental transformations separate spatial skills?. Cognitive Processing, 2013, 14, 163-173.	1.4	68
7	Sensitivity of alpha and beta oscillations to sensorimotor characteristics of action: An EEG study of action production and gesture observation. Neuropsychologia, 2012, 50, 2745-2751.	1.6	61
8	Commentary: Analogical Thinking in Geoscience Education. Journal of Geoscience Education, 2010, 58, 2-13.	1.4	57
9	Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning. Topics in Cognitive Science, 2017, 9, 883-901.	1.9	54
10	Student Gestures Aid Penetrative Thinking. Journal of Geoscience Education, 2015, 63, 66-72.	1.4	51
11	Breaking new ground in the mind: an initial study of mental brittle transformation and mental rigid rotation in science experts. Cognitive Processing, 2013, 14, 143-152.	1.4	47
12	Using Relational Reasoning to Learn About Scientific Phenomena at Unfamiliar Scales. Educational Psychology Review, 2017, 29, 11-25.	8.4	32
13	The Spatial Thinking Workbook: A Research-Validated Spatial Skills Curriculum for Geology Majors. Journal of Geoscience Education, 2017, 65, 423-434.	1.4	30
14	Spatiotemporal unit formation. Behavioral and Brain Sciences, 1998, 21, 772-772.	0.7	25
15	Boundary Completion in Illusory Contours: Interpolation or Extrapolation?. Perception, 2003, 32, 985-999.	1.2	25
16	Dealing with Big Numbers: Representation and Understanding of Magnitudes Outside of Human Experience. Cognitive Science, 2017, 41, 1020-1041.	1.7	25
17	Learning to interpret topographic maps: Understanding layered spatial information. Cognitive Research: Principles and Implications, 2016, 1, 2.	2.0	24
18	Communication of IPCC visuals: IPCC authors' views and assessments of visual complexity. Climatic Change, 2020, 158, 255-270.	3.6	19

THOMAS F SHIPLEY

#	Article	IF	CITATIONS
19	Interactions between spatial and spatiotemporal information in spatiotemporal boundary formation. Perception & Psychophysics, 1998, 60, 839-851.	2.3	16
20	Learning About Spatial and Temporal Scale: Current Research, Psychological Processes, and Classroom Implications. Journal of Geoscience Education, 2017, 65, 455-472.	1.4	16
21	Transdisciplinary Science Education Research and Practice: Opportunities for GER in a Developing STEM Discipline-Based Education Research Alliance (DBER-A). Journal of Geoscience Education, 2017, 65, 354-362.	1.4	14
22	Seeing Like a Geologist: Bayesian Use of Expert Categories in Location Memory. Cognitive Science, 2016, 40, 440-454.	1.7	12
23	Assessing how visual search entropy and engagement predict performance in a multiple-objects tracking air traffic control task. Computers in Human Behavior Reports, 2021, 4, 100127.	4.0	12
24	The Roles of Working Memory and Cognitive Load in Geoscience Learning. Journal of Geoscience Education, 2017, 65, 506-518.	1.4	11
25	Using analogy to learn about phenomena at scales outside human perception. Cognitive Research: Principles and Implications, 2017, 2, 21.	2.0	9
26	How students reason about visualizations from large professionally collected data sets: A study of students approaching the threshold of data proficiency. Journal of Geoscience Education, 2018, 66, 55-76.	1.4	9
27	When seeing what's wrong makes you right: The effect of erroneous examples on <scp>3D</scp> diagram learning. Applied Cognitive Psychology, 2020, 34, 844-861.	1.6	9
28	Categorical biases in spatial memory: The role of certainty Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 473-481.	0.9	7
29	The Role of Geoscience Education Research in the Consilience between Science of the Mind and Science of the Natural World. Journal of Geoscience Education, 2017, 65, 393-398.	1.4	7
30	Promoting Sketching in Introductory Geoscience Courses: CogSketch Geoscience Worksheets. Topics in Cognitive Science, 2017, 9, 943-969.	1.9	7
31	Click-On-Diagram Questions: a New Tool to Study Conceptions Using Classroom Response Systems. Journal of Science Education and Technology, 2018, 27, 492-507.	3.9	7
32	Visual completion from 2D cross-sections: Implications for visual theory and STEM education and practice. Cognitive Research: Principles and Implications, 2016, 1, 9.	2.0	6
33	Evidence of vulnerability to decision bias in expert field scientists. Applied Cognitive Psychology, 2020, 34, 1217-1223.	1.6	6
34	Assessing Water Literacy: Undergraduate Student Conceptions of Groundwater and Surface Water Flow. Water (Switzerland), 2021, 13, 622.	2.7	5
35	Assessment of the General Public's Understanding of Rapidly Produced Earthquake Information Products ShakeMap and PAGER. Seismological Research Letters, 2022, 93, 2891-2905.	1.9	4
36	Spatially and temporally distributed data foraging decisions in disciplinary field science. Cognitive Research: Principles and Implications, 2021, 6, 29.	2.0	3

THOMAS F SHIPLEY

#	Article	IF	CITATIONS
37	Reasoning about time from space: Visual continuity may disrupt reasoning about the passage of time within accreted materials. Journal of Geoscience Education, 2018, 66, 147-165.	1.4	2
38	Social comparison for concern and action on climate change, racial injustice, and COVIDâ€19. Analyses of Social Issues and Public Policy, 2022, 22, 469-489.	1.7	2
39	Challenges in Making Meaning from Groundâ€Motion Visualizations: The Role of Geoscience Knowledge in Interpreting Dynamic Spatiotemporal Patterns. Seismological Research Letters, 2019, , .	1.9	1
40	Explicit Instruction of Scientific Uncertainty in an Undergraduate Geoscience Field-Based Course. Science and Education, 2022, 31, 1541-1566.	2.7	1
41	Scaffolding geology content and spatial skills with playdough modeling in the field and classroom. Journal of Geoscience Education, 0, , 1-15.	1.4	1