Giang T H Vu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1626411/publications.pdf Version: 2024-02-01

		567281	677142
22	714	15	22
papers	citations	h-index	g-index
22	22	22	1222
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. International Journal of Molecular Sciences, 2022, 23, 966.	4.1	16
2	Future Prospects of Duckweed Research and Applications. Compendium of Plant Genomes, 2020, , 179-185.	0.5	4
3	Cytogenetics, Epigenetics and Karyotype Evolution of Duckweeds. Compendium of Plant Genomes, 2020, , 47-57.	0.5	2
4	Genome invasion by a hypomethylated satellite repeat in Australian crucifer Ballantinia antipoda. Plant Journal, 2019, 99, 1066-1079.	5.7	3
5	Deletionâ€bias in <scp>DNA</scp> doubleâ€strand break repair differentially contributes to plant genome shrinkage. New Phytologist, 2017, 214, 1712-1721.	7.3	34
6	Endogenous sequence patterns predispose the repair modes of <scp>CRISPR</scp> /Cas9â€induced <scp>DNA</scp> doubleâ€stranded breaks in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 92, 57-67.	5.7	34
7	The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding. International Journal of Genomics, 2016, 2016, 1-10.	1.6	40
8	The mapâ€based genome sequence of <i><scp>S</scp>pirodela polyrhiza</i> aligned with its chromosomes, a reference for karyotype evolution. New Phytologist, 2016, 209, 354-363.	7.3	40
9	Genome Stability and Evolution: Attempting a Holistic View. Trends in Plant Science, 2016, 21, 749-757.	8.8	125
10	Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus <i>Genlisea</i> . Plant Journal, 2015, 84, 1087-1099.	5.7	41
11	Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus. Plant Genome, 2015, 8, eplantgenome2015.04.0021.	2.8	45
12	Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Frontiers in Microbiology, 2015, 6, 526.	3.5	23
13	Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. Frontiers in Plant Science, 2015, 6, 613.	3.6	5
14	Chromatin organisation in duckweed interphase nuclei in relation to the nuclear <scp>DNA</scp> content. Plant Biology, 2015, 17, 120-124.	3.8	18
15	Chromatin features of plant telomeric sequences at terminal vs. internal positions. Frontiers in Plant Science, 2014, 5, 593.	3.6	33
16	Repair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse Pathways Primarily Involving the Sister Chromatid. Plant Cell, 2014, 26, 2156-2167.	6.6	55
17	Hidden genetic nature of epigenetic natural variation in plants. Trends in Plant Science, 2013, 18, 625-632.	8.8	39
18	Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley. Functional and Integrative Genomics, 2010, 10, 509-521.	3.5	19

GIANG T H VU

#	Article	IF	CITATIONS
19	Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Research, 2010, 18, 841-850.	2.2	50
20	A simple, high throughput method to locate single copy sequences from Bacterial Artificial Chromosome (BAC) libraries using High Resolution Melt analysis. BMC Genomics, 2010, 11, 301.	2.8	7
21	BAC-HAPPY Mapping (BAP Mapping): A New and Efficient Protocol for Physical Mapping. PLoS ONE, 2010, 5, e9089.	2.5	6
22	Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics, 2008, 9, 518.	2.8	75