Jeffrey W Bode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1626402/publications.pdf

Version: 2024-02-01

221 papers 17,392 citations

14614 66 h-index 124 g-index

316 all docs

316 does citations

316 times ranked

8749 citing authors

#	Article	IF	CITATIONS
1	Rethinking amide bond synthesis. Nature, 2011, 480, 471-479.	13.7	1,637
2	N-Heterocyclic Carbene-Catalyzed Generation of Homoenolates:Â \hat{I}^3 -Butyrolactones by Direct Annulations of Enals and Aldehydes. Journal of the American Chemical Society, 2004, 126, 14370-14371.	6.6	676
3	On the Mechanism of N-Heterocyclic Carbene-Catalyzed Reactions Involving Acyl Azoliums. Accounts of Chemical Research, 2014, 47, 696-707.	7.6	611
4	Highly Enantioselective Azadiene Dielsâ^'Alder Reactions Catalyzed by Chiral N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2006, 128, 8418-8420.	6.6	544
5	Catalytic Selective Synthesis. Angewandte Chemie - International Edition, 2012, 51, 10954-10990.	7.2	401
6	Chemoselective Amide Ligations by Decarboxylative Condensations of N-Alkylhydroxylamines and α-Ketoacids. Angewandte Chemie - International Edition, 2006, 45, 1248-1252.	7.2	366
7	N-Heterocyclic Carbene-Catalyzed Redox Amidations of $\hat{l}\pm$ -Functionalized Aldehydes with Amines. Journal of the American Chemical Society, 2007, 129, 13798-13799.	6.6	337
8	Chiral N-Heterocyclic Carbene Catalyzed, Enantioselective Oxodiene Dielsâ^'Alder Reactions with Low Catalyst Loadings. Journal of the American Chemical Society, 2006, 128, 15088-15089.	6.6	324
9	An Enantioselective Claisen Rearrangement Catalyzed by N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2010, 132, 8810-8812.	6.6	320
10	Catalytic Generation of Activated Carboxylates:  Direct, Stereoselective Synthesis of β-Hydroxyesters from Epoxyaldehydes. Journal of the American Chemical Society, 2004, 126, 8126-8127.	6.6	314
11	Enantioselective, Cyclopentene-Forming Annulations via NHC-Catalyzed Benzoinâ 'Oxy-Cope Reactions. Journal of the American Chemical Society, 2007, 129, 3520-3521.	6.6	313
12	Catalytic Synthesis of \hat{l}^3 -Lactams via Direct Annulations of Enals and N-Sulfonylimines. Organic Letters, 2005, 7, 3131-3134.	2.4	278
13	Catalytic Generation of Activated Carboxylates from Enals:  A Product-Determining Role for the Base. Organic Letters, 2005, 7, 3873-3876.	2.4	253
14	Synthesis of Saturated N-Heterocycles. Journal of Organic Chemistry, 2014, 79, 2809-2815.	1.7	242
15	Enantioselective, NHC-Catalyzed Bicyclo-β-Lactam Formation via Direct Annulations of Enals and Unsaturated <i>N</i> -Sulfonyl Ketimines. Journal of the American Chemical Society, 2008, 130, 418-419.	6.6	239
16	Catalytic Enantioselective Crossed Aldehyde–Ketone Benzoin Cyclization. Angewandte Chemie - International Edition, 2006, 45, 3492-3494.	7.2	231
17	Enantioselective, NHCâ€Catalyzed Annulations of Trisubstituted Enals and Cyclic <i>N</i> àê€Sulfonylimines via α,βâ€Unsaturated Acyl Azoliums. Angewandte Chemie - International Edition, 2012, 51, 9433-9436.	7.2	206
18	The effect of the N-mesityl group in NHC-catalyzed reactions. Chemical Science, 2012, 3, 192-197.	3.7	191

#	Article	IF	Citations
19	Catalytic Intramolecular Crossed Aldehydeâ^'Ketone Benzoin Reactions:Â A Novel Synthesis of Functionalized Preanthraquinones. Journal of the American Chemical Society, 2003, 125, 8432-8433.	6.6	183
20	Cyclic Ketimines as Superior Electrophiles for NHC-Catalyzed Homoenolate Additions with Broad Scope and Low Catalyst Loadings. Journal of the American Chemical Society, 2008, 130, 17266-17267.	6.6	183
21	N-Heterocyclic Carbene Catalyzed CC Bond Cleavage in Redox Esterifications of Chiral Formylcyclopropanes. Angewandte Chemie - International Edition, 2006, 45, 6021-6024.	7.2	181
22	Catalytic Generation of Activated Carboxylates from Enals: A Product-Determining Role for the Base ChemInform, 2006, 37, no.	0.1	180
23	Chiral N-heterocyclic carbene-catalyzed generation of ester enolate equivalents from Â,Â-unsaturated aldehydes for enantioselective Diels-Alder reactions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20661-20665.	3.3	169
24	Catalytic Kinetic Resolution of Cyclic Secondary Amines. Journal of the American Chemical Society, 2011, 133, 19698-19701.	6.6	166
25	Enantioselective Synthesis of Dihydropyridinones via NHC-Catalyzed Aza-Claisen Reaction. Organic Letters, 2011, 13, 5378-5381.	2.4	165
26	Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science, 2021, 372, 1306-1313.	6.0	165
27	Chiral N-Heterocyclic Carbene-Catalyzed Annulations of Enals and Ynals with Stable Enols: A Highly Enantioselective Coates–Claisen Rearrangement. ACS Catalysis, 2012, 2, 494-503.	5.5	158
28	α′-Hydroxyenones as Mechanistic Probes and Scope-Expanding Surrogates for α,β-Unsaturated Aldehydes in N-Heterocyclic Carbene-Catalyzed Reactions. Journal of the American Chemical Society, 2009, 131, 8714-8718.	6.6	153
29	α,βâ€Unsaturated Acyl Azoliums from Nâ€Heterocyclic Carbene Catalyzed Reactions: Observation and Mechanistic Investigation. Angewandte Chemie - International Edition, 2011, 50, 1673-1677.	7.2	147
30	Stereoselective Syntheses of Epothilones A and B via Nitrile Oxide Cycloadditions and Related Studies. Journal of Organic Chemistry, 2001, 66, 6410-6424.	1.7	142
31	Stereoselective Syntheses of Epothilones A and B via Directed Nitrile Oxide Cycloaddition1. Journal of the American Chemical Society, 2001, 123, 3611-3612.	6.6	142
32	SnAP reagents for the one-step synthesis of medium-ring saturated N-heterocycles from aldehydes. Nature Chemistry, 2014, 6, 310-314.	6.6	141
33	Critical Evaluation and Rate Constants of Chemoselective Ligation Reactions for Stoichiometric Conjugations in Water. ACS Chemical Biology, 2015, 10, 1026-1033.	1.6	140
34	Intramolecular Regioselective Insertion into Unactivated Prochiral Carbonâ^'Hydrogen Bonds with Diazoacetates of Primary Alcohols Catalyzed by Chiral Dirhodium(II) Carboxamidates. Highly Enantioselective Total Synthesis of Natural Lignan Lactones. Journal of Organic Chemistry, 1996, 61, 9146-9155.	1.7	135
35	Chemical Protein Synthesis with the α-Ketoacid–Hydroxylamine Ligation. Accounts of Chemical Research, 2017, 50, 2104-2115.	7.6	134
36	Amideâ€Forming Ligation of Acyltrifluoroborates and Hydroxylamines in Water. Angewandte Chemie - International Edition, 2012, 51, 5683-5686.	7.2	133

#	Article	lF	Citations
37	Chiral NHC-Catalyzed Oxodiene Dielsâ^'Alder Reactions with α-Chloroaldehyde Bisulfite Salts. Organic Letters, 2008, 10, 3817-3820.	2.4	132
38	Stereodivergency of Triazolium and Imidazolium-Derived NHCs for Catalytic, Enantioselective Cyclopentane Synthesis. Organic Letters, 2009, 11, 677-680.	2.4	129
39	A General Solution to the Modular Synthesis of Polyketide Building Blocks by Kanemasa Hydroxy-Directed Nitrile Oxide Cycloadditions. Angewandte Chemie - International Edition, 2001, 40, 2082-2085.	7.2	122
40	Rapid Ligations with Equimolar Reactants in Water with the Potassium Acyltrifluoroborate (KAT) Amide Formation. Journal of the American Chemical Society, 2014, 136, 5611-5614.	6.6	118
41	Chemical Protein Synthesis by Chemoselective αâ€Ketoacid–Hydroxylamine (KAHA) Ligations with 5â€Oxaproline. Angewandte Chemie - International Edition, 2012, 51, 5114-5118.	7.2	109
42	On the Role of CO2in NHC-Catalyzed Oxidation of Aldehydes. Organic Letters, 2011, 13, 2422-2425.	2.4	108
43	A Mild and Chemoselective Method for the Reduction of Conjugated Isoxazolines to \hat{l}^2 -Hydroxy Ketones. Organic Letters, 2001, 3, 1587-1590.	2.4	100
44	Facile Synthesis of Sterically Hindered and Electronâ€Deficient Secondary Amides from Isocyanates. Angewandte Chemie - International Edition, 2012, 51, 9173-9175.	7.2	97
45	Synthesis of an <i>N</i> -Mesityl Substituted Chiral Imidazolium Salt for NHC-Catalyzed Reactions. Organic Letters, 2008, 10, 957-960.	2.4	94
46	Expanded Substrate Scope and Improved Reactivity of Ether-Forming Cross-Coupling Reactions of Organotrifluoroborates and Acetals. Journal of the American Chemical Society, 2011, 133, 14082-14089.	6.6	91
47	Iterative, Aqueous Synthesis of \hat{l}^2 3-Oligopeptides without Coupling Reagents. Journal of the American Chemical Society, 2006, 128, 1452-1453.	6.6	88
48	A computational study of the origin of stereoinduction in NHC-catalyzed annulation reactions of \hat{l}_{\pm},\hat{l}^2 -unsaturated acyl azoliums. Chemical Science, 2012, 3, 2346.	3.7	88
49	Oxyanion Steering and CHâ^Ï€ Interactions as Key Elements in an N-Heterocyclic Carbene-Catalyzed [4 + 2] Cycloaddition. Journal of the American Chemical Society, 2012, 134, 12098-12103.	6.6	88
50	Chemoselective Acylation of Primary Amines and Amides with Potassium Acyltrifluoroborates under Acidic Conditions. Journal of the American Chemical Society, 2017, 139, 1826-1829.	6.6	85
51	Synthesis of Acyltrifluoroborates. Organic Letters, 2012, 14, 2138-2141.	2.4	84
52	One-Step Synthesis of Saturated Spirocyclic N-Heterocycles with Stannyl Amine Protocol (SnAP) Reagents and Ketones. Journal of the American Chemical Society, 2014, 136, 17726-17729.	6.6	84
53	Chemical Sensing of Polyols with Shapeshifting Boronic Acids As a Self-Contained Sensor Array. Journal of the American Chemical Society, 2013, 135, 11314-11321.	6.6	83
54	An internal affair. Nature Chemistry, 2013, 5, 813-815.	6.6	83

#	Article	IF	CITATIONS
55	Synthesis of Dialkyl Ethers from Organotrifluoroborates and Acetals. Journal of the American Chemical Society, 2009, 131, 18057-18059.	6.6	81
56	An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations. Nature Chemistry, 2015, 7, 668-672.	6.6	81
57	The Mechanism of the αâ€Ketoacid–Hydroxylamine Amideâ€Forming Ligation. Angewandte Chemie - International Edition, 2012, 51, 513-516.	7.2	79
58	SnAP Reagents for the Synthesis of Piperazines and Morpholines. Organic Letters, 2014, 16, 1236-1239.	2.4	79
59	Catalytic amide formation with α′-hydroxyenones as acylating reagents. Chemical Communications, 2009, , 4566.	2.2	78
60	Stereoretentive Synthesis and Chemoselective Amide-Forming Ligations of C-Terminal Peptide \hat{l}_{\pm} -Ketoacids. Journal of the American Chemical Society, 2008, 130, 4253-4255.	6.6	73
61	Silicon Amine Reagents for the Photocatalytic Synthesis of Piperazines from Aldehydes and Ketones. Organic Letters, 2016, 18, 2098-2101.	2.4	72
62	SnAP Reagents for the Transformation of Aldehydes into Substituted Thiomorpholinesâ€"An Alternative to Crossâ€Coupling with Saturated Heterocycles. Angewandte Chemie - International Edition, 2013, 52, 1705-1708.	7.2	71
63	Traceless Preparation of Câ€Terminal αâ€Ketoacids for Chemical Protein Synthesis by αâ€Ketoacid–Hydroxylamine Ligation: Synthesis of SUMO2/3. Angewandte Chemie - International Edition, 2014, 53, 12248-12252.	7.2	71
64	Amine-promoted cyclocondensation of highly substituted aromatic nitrile oxides with diketones. Tetrahedron Letters, 2003, 44, 3555-3558.	0.7	66
65	A Reagent for the Oneâ€6tep Preparation of Potassium Acyltrifluoroborates (KATs) from Aryl―and Heteroarylhalides. Angewandte Chemie - International Edition, 2014, 53, 7604-7607.	7.2	65
66	Sequential αâ€Ketoacidâ€Hydroxylamine (KAHA) Ligations: Synthesis of Câ€Terminal Variants of the Modifier Protein UFM1. Angewandte Chemie - International Edition, 2012, 51, 9693-9697.	7.2	64
67	Catalytic Synthesis of Nâ€Unprotected Piperazines, Morpholines, and Thiomorpholines from Aldehydes and SnAP Reagents. Angewandte Chemie - International Edition, 2015, 54, 10884-10888.	7.2	64
68	Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate. Angewandte Chemie - International Edition, 2017, 56, 13847-13851.	7.2	64
69	Formal synthesis of salinosporamide A via NHC-catalyzed intramolecular lactonization. Tetrahedron, 2009, 65, 4957-4967.	1.0	63
70	Friedel–Crafts Benzylation of Activated and Deactivated Arenes. Angewandte Chemie - International Edition, 2011, 50, 10913-10916.	7.2	62
71	Optimization of Enantiocontrol for Carbon-Hydrogen Insertion with Chiral Dirhodium(II) Carboxamidates. Synthesis of Natural Dibenzylbutyrolactone Lignans from 3-Aryl-1-propyl Diazoacetates in High Optical Purity. Journal of Organic Chemistry, 1995, 60, 6654-6655.	1.7	61
72	Synthesis and chemoselective ligations of MIDA acylboronates with O-Me hydroxylamines. Chemical Science, 2014, 5, 4328-4332.	3.7	61

#	Article	IF	Citations
73	Olefin Amine (OLA) Reagents for the Synthesis of Bridged Bicyclic and Spirocyclic Saturated N-Heterocycles by Catalytic Hydrogen Atom Transfer (HAT) Reactions. Journal of the American Chemical Society, 2019, 141, 9739-9745.	6.6	59
74	Expanded substrate scope and catalyst optimization for the catalytic kinetic resolution of N-heterocycles. Chemical Communications, 2012, 48, 8892.	2.2	56
75	Synthesis of Chemically and Configurationally Stable Monofluoro Acylboronates: Effect of Ligand Structure on their Formation, Properties, and Reactivities. Journal of the American Chemical Society, 2015, 137, 3958-3966.	6.6	56
76	Continuous Flow Synthesis of Morpholines and Oxazepanes with Silicon Amine Protocol (SLAP) Reagents and Lewis Acid Facilitated Photoredox Catalysis. Organic Letters, 2017, 19, 4696-4699.	2.4	56
77	Concerted Amidation of Activated Esters: Reaction Path and Origins of Selectivity in the Kinetic Resolution of Cyclic Amines via N-Heterocyclic Carbenes and Hydroxamic Acid Cocatalyzed Acyl Transfer. Journal of the American Chemical Society, 2014, 136, 11783-11791.	6.6	54
78	Morphogenesis Guided by 3D Patterning of Growth Factors in Biological Matrices. Advanced Materials, 2020, 32, e1908299.	11.1	54
79	Bespoke SnAP Reagents for the Synthesis of C-Substituted Spirocyclic and Bicyclic Saturated N-Heterocycles. Organic Letters, 2015, 17, 1934-1937.	2.4	52
80	PEGylation and Dimerization of Expressed Proteins under Near Equimolar Conditions with Potassium 2-Pyridyl Acyltrifluoroborates. ACS Central Science, 2018, 4, 197-206.	5. 3	52
81	Facile Construction and Divergent Transformation of Polycyclic Isoxazoles:  Direct Access to Polyketide Architectures. Organic Letters, 2003, 5, 391-394.	2.4	51
82	Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids. Accounts of Chemical Research, 2016, 49, 2807-2821.	7.6	51
83	Synthesis of Phototrappable Shape-Shifting Molecules for Adaptive Guest Binding. Journal of the American Chemical Society, 2010, 132, 15790-15799.	6.6	50
84	A general strategy for the preparation of C-terminal peptide \hat{l}_{\pm} -ketoacids by solid phase peptide synthesis. Organic and Biomolecular Chemistry, 2009, 7, 2259.	1.5	48
85	Formation and Rearrangement of Homoserine Depsipeptides and Depsiproteins in the αâ€Ketoacid–Hydroxylamine Ligation with 5â€Oxaproline. Angewandte Chemie - International Edition, 2014, 53, 12244-12247.	7.2	47
86	Synthesis of Oligosubstituted Bullvalones:Â Shapeshifting Molecules Under Basic Conditions. Journal of the American Chemical Society, 2006, 128, 14738-14739.	6.6	46
87	Lysine acylation using conjugating enzymes for site-specific modification and ubiquitination of recombinant proteins. Nature Chemistry, 2020, 12, 1008-1015.	6.6	46
88	Synthesis and reactivities of monofluoro acylboronates in chemoselective amide bond forming ligation with hydroxylamines. Organic and Biomolecular Chemistry, 2016, 14, 16-20.	1.5	43
89	Catalytic Kinetic Resolution of Disubstituted Piperidines by Enantioselective Acylation: Synthetic Utility and Mechanistic Insights. Journal of the American Chemical Society, 2015, 137, 11491-11497.	6.6	42
90	Protein chemical synthesis by α-ketoacid–hydroxylamine ligation. Nature Protocols, 2016, 11, 1130-1147.	5 . 5	42

#	Article	IF	Citations
91	N-Heterocyclic Carbenes as Organic Catalysts. RSC Catalysis Series, 2010, , 399-435.	0.1	41
92	Reinventing Amide Bond Formation. Topics in Organometallic Chemistry, 2012, , 13-33.	0.7	41
93	Racemization as a stereochemical measure of dynamics and robustness in shape-shifting organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14752-14756.	3.3	40
94	Chemical sensing with shapeshifting organic molecules. Chemical Science, 2012, 3, 1825.	3.7	40
95	Lewis Acid Induced Toggle from Ir(II) to Ir(IV) Pathways in Photocatalytic Reactions: Synthesis of Thiomorpholines and Thiazepanes from Aldehydes and SLAP Reagents. ACS Central Science, 2017, 3, 66-72.	5.3	40
96	Title is missing!. Chemical Communications, 2001, , 2560-2561.	2.2	39
97	Synthesis of Biocompatible PEG Hydrogels by pH-Sensitive Potassium Acyltrifluoroborate (KAT) Amide Ligations. ACS Biomaterials Science and Engineering, 2015, 1, 456-462.	2.6	39
98	Isoxazole-Directed Pinacol Rearrangement: Stereocontrolled Approach to Angular Stereogenic Centers. Angewandte Chemie - International Edition, 2007, 46, 3252-3254.	7.2	38
99	Synthesis of human GLP-1 (7–36) by chemoselective α-ketoacid–hydroxylamine peptide ligation of unprotected fragments. Chemical Science, 2011, 2, 1976.	3.7	38
100	Lateâ€Stage Diversification of Chiral Nâ€Heterocyclicâ€Carbene Precatalysts for Enantioselective Homoenolate Additions. Chemistry - an Asian Journal, 2011, 6, 614-620.	1.7	38
101	Synthesis and stabilities of peptide-based [1]rotaxanes: molecular grafting onto lasso peptide scaffolds. Chemical Science, 2017, 8, 2878-2884.	3.7	38
102	Facile synthesis of \hat{l} ±-aminoboronic acids from amines and potassium acyltrifluoroborates (KATs) via trifluoroborate-iminiums (TIMs). Chemical Science, 2018, 9, 5191-5196.	3.7	38
103	Chemical Synthesis of Atomically Tailored SUMO E2 Conjugating Enzymes for the Formation of Covalently Linked SUMO–E2–E3 Ligase Ternary Complexes. Journal of the American Chemical Society, 2019, 141, 14742-14751.	6.6	38
104	A Novel, General Method for the Synthesis of Nitrile Oxides:  Dehydration of O-Silylated Hydroxamic Acids. Organic Letters, 2000, 2, 539-541.	2.4	37
105	KAHA Ligations That Form Aspartyl Aldehyde Residues as Synthetic Handles for Protein Modification and Purification. Journal of the American Chemical Society, 2014, 136, 18140-18148.	6.6	37
106	Dynamic supramolecular complexation by shapeshifting organic molecules. Organic and Biomolecular Chemistry, 2009, 7, 1529.	1.5	35
107	Chemical Synthesis of the Highly Hydrophobic Antiviral Membraneâ€Associated Protein IFITM3 and Modified Variants. Angewandte Chemie - International Edition, 2017, 56, 12639-12643.	7.2	35
108	Introduction of <scp>d</scp> â€Amino Acids in Minimalistic Peptide Substrates by an <i>S</i> â€Adenosylâ€≺scp>lâ€Methionine Radical Epimerase. Angewandte Chemie - International Edition, 2019, 58, 2246-2250.	7.2	35

#	Article	lF	CITATIONS
109	Chemoselective cyclization of unprotected linear peptides by α-ketoacid–hydroxylamine amide-ligation. Organic and Biomolecular Chemistry, 2012, 10, 5837.	1.5	34
110	Prevention of aspartimide formation during peptide synthesis using cyanosulfurylides as carboxylic acid-protecting groups. Nature Communications, $2020,11,982.$	5.8	34
111	Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles. Nature Chemistry, 2017, 9, 446-452.	6.6	33
112	Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate. Angewandte Chemie, 2017, 129, 14035-14039.	1.6	33
113	Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nature Communications, 2021, 12, 7036.	5.8	33
114	Simple One-pot Conversion of Aldehydes and Ketones to Enals. Organic Letters, 2009, 11, 2117-2119.	2.4	32
115	New chemistries for chemoselective peptide ligations and the total synthesis of proteins. Current Opinion in Chemical Biology, 2014, 22, 115-121.	2.8	32
116	Chemical synthesis of a homoserine-mutant of the antibacterial, head-to-tail cyclized protein AS-48 by α-ketoacid–hydroxylamine (KAHA) ligation. Chemical Science, 2017, 8, 4051-4055.	3.7	32
117	Iridium-catalyzed Synthesis of Saturated N-Heterocycles from Aldehydes and SnAP Reagents with Continuous Flow Photochemistry. Organic Letters, 2018, 20, 2071-2075.	2.4	32
118	Kinetic Resolution of Nitrogen Heterocycles with a Reusable Polymerâ€Supported Reagent. Angewandte Chemie - International Edition, 2012, 51, 10660-10663.	7.2	31
119	Unified synthesis of enantiopure Î ² 2h, Î ² 3h and Î ² 2,3-amino acids. Chemical Science, 2010, 1, 637.	3.7	30
120	Synthesis of Sterically Hindered <i>N</i> Acylated Amino Acids from <i>N</i> Carboxyanhydrides. Organic Letters, 2014, 16, 1526-1529.	2.4	30
121	SnAP-eX Reagents for the Synthesis of Exocyclic 3-Amino- and 3-Alkoxypyrrolidines and Piperidines from Aldehydes. Organic Letters, 2016, 18, 2652-2655.	2.4	30
122	A Reagent for the Convenient, Solid-Phase Synthesis of N-Terminal Peptide Hydroxylamines for Chemoselective Ligations. Journal of the American Chemical Society, 2009, 131, 3864-3865.	6.6	29
123	Asymmetric synthesis of enantiopure isoxazolidinone monomers for the synthesis of \hat{l}^2 3-oligopeptides by chemoselective amide ligation. Tetrahedron, 2010, 66, 4841-4853.	1.0	29
124	Spontaneous head-to-tail cyclization of unprotected linear peptides with the KAHA ligation. Chemical Science, 2015, 6, 4889-4896.	3.7	28
125	One-Step Synthesis of Aliphatic Potassium Acyltrifluoroborates (KATs) from Organocuprates. Organic Letters, 2018, 20, 2378-2381.	2.4	28
126	Covalently functionalized amide cross-linked hydrogels from primary amines and polyethylene glycol acyltrifluoroborates (PEG-KATs). Journal of Materials Chemistry B, 2018, 6, 4775-4782.	2.9	28

#	Article	IF	Citations
127	Synthesis of Bifunctional Potassium Acyltrifluoroborates. Organic Letters, 2016, 18, 5336-5339.	2.4	27
128	Leaving Groups as Traceless Topological Modifiers for the Synthesis of Topologically Isomeric Polymer Networks. Journal of the American Chemical Society, 2018, 140, 14033-14037.	6.6	27
129	Catalytic Synthesis of Potassium Acyltrifluoroborates (KATs) through Chemoselective Crossâ€Coupling with a Bifunctional Reagent. Angewandte Chemie - International Edition, 2019, 58, 11058-11062.	7.2	27
130	Synthesis of Acylboron Compounds. Angewandte Chemie - International Edition, 2020, 59, 16847-16858.	7.2	27
131	Nitrone protecting groups for enantiopure N-hydroxyamino acids: synthesis of N-terminal peptide hydroxylamines for chemoselective ligations. Organic and Biomolecular Chemistry, 2010, 8, 3405.	1.5	26
132	Photoprotected Peptide <i>α</i> â€Ketoacids and Hydroxylamines for Iterative and Oneâ€Pot <scp>KAHA</scp> Ligations: Synthesis of <scp>NEDD</scp> 8. Helvetica Chimica Acta, 2016, 99, 868-894.	1.0	26
133	Chemical Synthesis of the 20 kDa Heme Protein Nitrophorin 4 by αâ€Ketoacidâ€Hydroxylamine (KAHA) Ligation. Angewandte Chemie - International Edition, 2015, 54, 12996-13001.	7.2	25
134	Traceless Templated Amide-Forming Ligations. Journal of the American Chemical Society, 2019, 141, 8721-8726.	6.6	24
135	A modular synthesis of chiral aminoindanol-derived imidazolium salts. Tetrahedron, 2008, 64, 6961-6972.	1.0	23
136	E pluribus unum: isolation, structure determination, network analysis and DFT studies of a single metastable structure from a shapeshifting mixture of 852 bullvalene structural isomers. Organic and Biomolecular Chemistry, 2013, 11, 1306-1317.	1.5	23
137	Isoxazole → Benzisoxazole Rearrangement Promoted Cascade Reactions Affording Stereodefined Polycycles. Organic Letters, 2003, 5, 395-398.	2.4	22
138	Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents. Nature Chemistry, 2014, 6, 877-884.	6.6	22
139	A Robust, Recyclable Resin for Decagram Scale Resolution of (⟨i⟩±⟨ i⟩)â€Mefloquine and Other Chiral Nâ€Heterocycles. Angewandte Chemie - International Edition, 2016, 55, 1553-1556.	7.2	21
140	Synthesis of N,N-Alkylated \hat{l}_{\pm} -Tertiary Amines by Coupling of \hat{l}_{\pm} -Aminoalkyltrifluoroborates and Grignard Reagents. Organic Letters, 2018, 20, 4044-4047.	2.4	21
141	Structural incongruities of coleophomone natural products: insights by total synthesis of a semi-synthetic derivative. Tetrahedron Letters, 2003, 44, 3559-3563.	0.7	20
142	Iterative Assembly of Polycyclic Saturated Heterocycles from Monomeric Building Blocks. Journal of the American Chemical Society, 2019, 141, 5544-5554.	6.6	20
143	Facile folding of insulin variants bearing a prosthetic C-peptide prepared by \hat{l}_{\pm} -ketoacid-hydroxylamine (KAHA) ligation. Chemical Science, 2018, 9, 8388-8395.	3.7	19
144	Identification, heterologous production and bioactivity of lentinulin A and dendrothelin A, two natural variants of backbone N-methylated peptide macrocycle omphalotin A. Scientific Reports, 2021, 11, 3541.	1.6	19

#	Article	IF	CITATIONS
145	Chemoselective Protection of \hat{l}_{\pm} -Ketoacids by Direct Annulations with Oximes. Organic Letters, 2010, 12, 1924-1927.	2.4	18
146	Enantioselective, Chromatography-Free Synthesis of \hat{l}^2 sup>3-Amino Acids with Natural and Unnatural Side Chains. Organic Process Research and Development, 2012, 16, 687-696.	1.3	18
147	Potassium Acyltrifluoroborate (<scp>KAT</scp>) Ligations are Orthogonal to Thiolâ€∢i>Michael and <scp>SPAAC</scp> Reactions: Covalent Dual Immobilization of Proteins onto Synthetic <scp>PEG</scp> Hydrogels. Helvetica Chimica Acta, 2017, 100, e1600311.	1.0	18
148	Synthesis of Polymers Containing Potassium Acyltrifluoroborates (KATs) and Postâ€polymerization Ligation and Conjugation. Angewandte Chemie - International Edition, 2020, 59, 14656-14663.	7.2	18
149	Chemical Synthesis of Interleukinâ€⊋ and Disulfide Stabilizing Analogues. Angewandte Chemie - International Edition, 2020, 59, 8425-8429.	7.2	18
150	Irreversible Conjugation of Aldehydes in Water To Form Stable 1,2,4-Oxadiazinan-5-ones. Organic Letters, 2016, 18, 4210-4213.	2.4	17
151	Incorporation of Acid-Labile Masking Groups for the Traceless Synthesis of C-Terminal Peptide α-Ketoacids. Organic Letters, 2016, 18, 3670-3673.	2.4	17
152	The Synthesis of Sterically Hindered Amides. Chimia, 2014, 68, 252.	0.3	16
153	Chemical Protein Synthesis with the KAHA Ligation. Topics in Current Chemistry, 2014, 363, 1-31.	4.0	16
154	Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs). Chemical Science, 2020, 11, 7609-7614.	3.7	16
155	An integrated console for capsule-based, automated organic synthesis. Chemical Science, 2021, 12, 6977-6982.	3.7	16
156	Synthesis of Tetrahydronaphthyridines from Aldehydes and HARP Reagents via Radical Pictet–Spengler Reactions. Organic Letters, 2016, 18, 1713-1715.	2.4	15
157	Katalytische Synthese von Kaliumacyltrifluoroboraten mithilfe chemoselektiver Kreuzkupplung eines bifunktionalen Reagenzes. Angewandte Chemie, 2019, 131, 11174-11178.	1.6	15
158	Reactor ChemAxon Ltd., Maramaros koz 2/a, Budapest, 1037 Hungary. www.chemaxon.com. Contact ChemAxon for pricing information Journal of the American Chemical Society, 2004, 126, 15317-15317.	6.6	14
159	Antibiotic Discovery with Synthetic Fermentation: Library Assembly, Phenotypic Screening, and Mechanism of Action of \hat{I}^2 -Peptides Targeting Penicillin-Binding Proteins. ACS Chemical Biology, 2019, 14, 1030-1040.	1.6	14
160	Synthesis of Aza-Surfactin and 3-Epi-Aza-Surfactin. Heterocycles, 2012, 84, 1179.	0.4	13
161	A Threonineâ€Forming Oxazetidine Amino Acid for the Chemical Synthesis of Proteins through KAHA Ligation. Angewandte Chemie - International Edition, 2019, 58, 12599-12603.	7.2	13
162	Chemoselective ¹⁸ F-incorporation into pyridyl acyltrifluoroborates for rapid radiolabelling of peptides and proteins at room temperature. Chemical Communications, 2020, 56, 723-726.	2.2	13

#	Article	IF	Citations
163	Site-Specific Protein Ubiquitylation Using an Engineered, Chimeric E1 Activating Enzyme and E2 SUMO Conjugating Enzyme Ubc9. ACS Central Science, 2022, 8, 275-281.	5.3	13
164	Formal Synthesis of (±)-Clausenamide by NHC-Catalyzed γ-Lactam Formation. Heterocycles, 2012, 86, 1689.	0.4	12
165	Chemical Synthesis of the 12 <scp>kD</scp> a Human Myokine Irisin by <i>α</i> â€Ketoacidâ€Hydroxylamine (KAHA) Ligation. Helvetica Chimica Acta, 2016, 99, 897-907.	1.0	12
166	Catalytic Synthesis of Potassium Acyltrifluoroborates (KATs) from Boronic Acids and the Thioimidate KAT Transfer Reagent. Angewandte Chemie - International Edition, 2021, 60, 3918-3922.	7.2	12
167	AMIDE FORMATION BY DECARBOXYLATIVE CONDENSATION OF HYDROXYLAMINES AND a-KETOACIDS: N-[(1S)-1 PHENYLETHYL]-BENZENEACETAMIDE. Organic Syntheses, 2010, 87, 218.	1.0	12
168	Synthesis of Enantiomerically Pure Isoxazolidine Monomers for the Preparation of ⟨i⟩β⟨ i⟩⟨sup⟩3⟨ sup⟩â€Oligopeptides by Iterative ⟨i⟩α⟨ i⟩â€Keto AcidHydroxylamine (KAHA) Ligations. Helvetica Chimica Acta, 2012, 95, 2481-2501.	1.0	11
169	Catalytic Redox Amidations of Aldehydes with a Polymer-Supported Peptide-N-Heterocyclic Carbene Multifunctional Catalyst. Synlett, 2013, 24, 1205-1210.	1.0	11
170	Chemical Synthesis of the Highly Hydrophobic Antiviral Membraneâ€Associated Protein IFITM3 and Modified Variants. Angewandte Chemie, 2017, 129, 12813-12817.	1.6	11
171	Synthetic fermentation of bioactive molecules. Current Opinion in Chemical Biology, 2018, 46, 18-24.	2.8	10
172	Chemoselective derivitization of folded synthetic insulin variants with potassium acyltrifluoroborates (KATs). Helvetica Chimica Acta, 2018, 102, e1800214.	1.0	10
173	Reagent-Based Scaffold Diversity for DNA-Encoded Library Design: Solid Phase Synthesis of DNA-Tagged sp ³ -Rich Heterocycles by SnAP Chemistry. Organic Letters, 2022, 24, 1383-1387.	2.4	10
174	Preparation of Potassium Acyltrifluoroborates (KATs) from Carboxylic Acids by Copperâ€Catalyzed Borylation of Mixed Anhydrides**. Angewandte Chemie - International Edition, 2022, 61, e202114513.	7.2	10
175	Stereoelectronic Basis for the Kinetic Resolution of Nâ€Heterocycles with Chiral Acylating Reagents. Chemistry - A European Journal, 2014, 20, 7228-7231.	1.7	9
176	Improved synthesis of (S)-N-Boc-5-oxaproline for protein synthesis with the \hat{l}_{\pm} -ketoacid-hydroxylamine (KAHA) ligation. Bioorganic and Medicinal Chemistry, 2017, 25, 4996-5001.	1.4	9
177	Product Selectivity in KAHA Ligations: Ester vs. Amide Formation with Cyclic Hydroxylamines. Synlett, 2017, 28, 1929-1933.	1.0	9
178	Optimized synthesis of a cyanosulfurylide linker for Fmoc-SPPS of C-terminal peptide α-ketoacids. Tetrahedron Letters, 2015, 56, 3477-3480.	0.7	8
179	Synthesis of tri-functionalized MMP2 FRET probes using a chemo-selective and late-stage modification of unprotected peptides. Organic and Biomolecular Chemistry, 2017, 15, 1792-1800.	1.5	8
180	Synthetic fermentation of \hat{l}^2 -peptide macrocycles by thiadiazole-forming ring-closing reactions. Chemical Science, 2018, 9, 2159-2167.	3.7	8

#	Article	IF	CITATIONS
181	Facile Preparation of UFMylation Activity-Based Probes by Chemoselective Installation of Electrophiles at the C-Terminus of Recombinant UFM1. ACS Central Science, 2022, 8, 756-762.	5.3	8
182	Copper Promoted Oxidative Coupling of SnAP Hydrazines and Aldehydes to Form Chiral 1,4,5â€Oxadiazepanes and 1,2,5â€Triazepanes. Helvetica Chimica Acta, 2017, 100, e1700199.	1.0	7
183	Mechanism-Based Design of Quinoline Potassium Acyltrifluoroborates for Rapid Amide-Forming Ligations at Physiological pH. Journal of the American Chemical Society, 2021, 143, 17557-17565.	6.6	7
184	Synthesis of an enantiopure isoxazolidine monomer for \hat{l}^2 3-aspartic acid in chemoselective \hat{l}^2 -oligopeptide synthesis. Tetrahedron Letters, 2009, 50, 3258-3260.	0.7	6
185	Tying up loose ends. Nature Chemistry, 2016, 8, 1085-1086.	6.6	6
186	Facile Synthesis of Internal and Câ€Terminal Peptide <i>α</i> â€Ketoamides with Fmocâ€Solid Phase Peptide Synthesis. Helvetica Chimica Acta, 2018, 101, e1800039.	1.0	6
187	Aspartic Acid Forming α-Ketoacid–Hydroxylamine (KAHA) Ligations with (<i>S</i>)-4,4-Difluoro-5-oxaproline. Journal of Organic Chemistry, 2020, 85, 1352-1364.	1.7	6
188	Myotubularin-related protein 7 activates peroxisome proliferator-activated receptor-gamma. Oncogenesis, 2020, 9, 59.	2.1	6
189	Synthesis of Acylboron Compounds. Angewandte Chemie, 2020, 132, 16993-17004.	1.6	6
190	Synthesis of Polymers Containing Potassium Acyltrifluoroborates (KATs) and Postâ€polymerization Ligation and Conjugation. Angewandte Chemie, 2020, 132, 14764-14771.	1.6	5
191	KAT Ligation for Rapid and Facile Covalent Attachment of Biomolecules to Surfaces. ACS Applied Materials & Surfaces, 2021, 13, 29113-29121.	4.0	5
192	Ein robustes und wiedergewinnbares Polymer fýr die Dekagrammâ€Racematspaltung von (±)â€Mefloquin und anderen, chiralen Nâ€Heterocyclen. Angewandte Chemie, 2016, 128, 1579-1582.	1.6	4
193	Evidence for a Radical Mechanism in Cu(II)-Promoted SnAP Reactions. Synlett, 2019, 30, 464-470.	1.0	4
194	Make a Molecule: A Synthetic Organic and Medicinal Chemistry Workshop Program for High School Students. Journal of Chemical Education, 2020, 97, 402-413.	1.1	4
195	Molecular Sieve (MS 4A) Promoted Cyclocondensation of Hindered, Aromatic Nitrile Oxides and Cyclic Diketones under Mild Conditions. Synlett, 2003, 2003, 1746-1748.	1.0	3
196	Synthesis and Evaluation of Cyclic Acetals of Serine Hydroxylamine for Amide-Forming KAHA Ligations. Synthesis, 2019, 51, 1273-1283.	1.2	3
197	Chemical Synthesis of Interleukinâ€⊋ and Disulfide Stabilizing Analogues. Angewandte Chemie, 2020, 132, 8503-8507.	1.6	3
198	Katalytische Synthese von Kaliumacyltrifluoroboraten (KATs) aus Boronsären und dem Thioimidatâ€KATâ€∓ransferreagenz. Angewandte Chemie, 2021, 133, 3964-3968.	1.6	3

#	ARTICLE	IF	Citations
199	Hydroxy-Directed Nitrile Oxide Cycloadditions This work was supported by the ETH-Zýrich, Hoffmann-LaRoche, Merck, and Novartis. J.W.B. thanks the National Science Foundation (USA) for a predoctoral fellowship. We are grateful to Boehringer-Ingelheim for a generous gift of	7.2	3
200	Chemical synthesis of <i>Torenia</i> plant pollen tube attractant proteins by KAHA ligation. RSC Chemical Biology, 2022, 3, 721-727.	2.0	3
201	Preparation of Potassium Acyltrifluoroborates (KATs) from Carboxylic Acids by Copperâ€Catalyzed Borylation of Mixed Anhydrides**. Angewandte Chemie, 2022, 134, .	1.6	3
202	Organic Synthesis without Stoichiometric Reagents: A Guiding Principle for Reaction Development. Chimia, 2011, 65, 150-156.	0.3	2
203	A radical approach to posttranslational mutagenesis. Science, 2016, 354, 553-554.	6.0	2
204	Spirocyclic Nitroxide Biradicals: Synthesis and Evaluation as Dynamic Nuclear Polarizing Agents. Helvetica Chimica Acta, 2020, 103, e2000179.	1.0	2
205	Postâ€Assembly Photomasking of Potassium Acyltrifluoroborates (KATs) for Twoâ€Photon 3D Patterning of PEGâ€Hydrogels. Helvetica Chimica Acta, 2020, 103, e2000172.	1.0	2
206	$\hat{l}_{\pm},\hat{l}_{\pm}$ -Dichloroisoxazolidinones for the Synthesis and Chemoselective Peptide Ligation of \hat{l}_{\pm} -Peptide \hat{l}_{\pm} -Ketoacids. Heterocycles, 2010, 82, 1515.	0.4	1
207	Eine Threoninâ€bildende Oxazetidinaminosäre fÃ⅓r die chemische Synthese von Proteinen mittels KAHA‣igation. Angewandte Chemie, 2019, 131, 12729-12733.	1.6	1
208	Chemical Protein Synthesis by Chemoselective #x03B1;-Ketoacid–Hydroxylamine (KAHA) Ligations with 5-Oxaproline. Methods in Molecular Biology, 2021, 2355, 151-162.	0.4	1
209	Facile Construction and Divergent Transformation of Polycyclic Isoxazoles: Direct Access to Polyketide Architectures ChemInform, 2003, 34, no.	0.1	0
210	Isoxazoleâ†'Benzisoxazole Rearrangement Promoted Cascade Reactions Affording Stereodefined Polycycles ChemInform, 2003, 34, no.	0.1	0
211	Amine-Promoted Cyclocondensation of Highly Substituted Aromatic Nitrile Oxides with Diketones ChemInform, 2003, 34, no.	0.1	0
212	Catalytic Intramolecular Crossed Aldehydeâ€"Ketone Benzoin Reactions: A Novel Synthesis of Functionalized Preanthraquinones ChemInform, 2003, 34, no.	0.1	0
213	Catalytic Generation of Activated Carboxylates: Direct, Stereoselective Synthesis of \hat{l}^2 -Hydroxyesters from Epoxyaldehydes ChemInform, 2004, 35, no.	0.1	0
214	N-Heterocyclic Carbene-Catalyzed Generation of Homoenolates: ?-Butyrolactones by Direct Annulations of Enals and Aldehydes ChemInform, 2005, 36, no.	0.1	0
215	Catalytic Synthesis of \hat{I}^3 -Lactams via Direct Annulations of Enals and N-Sulfonylimines ChemInform, 2005, 36, no.	0.1	0
216	A bright future for peptide science!!. Biopolymers, 2008, 90, 480-480.	1.2	0

#	Article	IF	CITATIONS
217	100th Anniversary of Helvetica. Helvetica Chimica Acta, 2016, 99, 819-819.	1.0	O
218	François Diederich (1952–2020) <i>in Memoriam</i> . Helvetica Chimica Acta, 2020, 103, e2000187.	1.0	0
219	Tissue Engineering: Morphogenesis Guided by 3D Patterning of Growth Factors in Biological Matrices (Adv. Mater. 25/2020). Advanced Materials, 2020, 32, 2070193.	11.1	0
220	Staying Connected and Inspired During Quarantine. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 1005-1005.	0.0	0
221	Peptide science in Switzerland - a revival. Chimia, 2013, 67, 841.	0.3	0