
David J Civitello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1626267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variability in environmental persistence but not per capita transmission rates of the amphibian chytrid fungus leads to differences in host infection prevalence. Journal of Animal Ecology, 2022, 91, 170-181.	2.8	4
2	Divergent effects of invasive macrophytes on population dynamics of a snail intermediate host of Schistosoma Mansoni. Acta Tropica, 2022, 225, 106226.	2.0	6
3	Transmission potential of human schistosomes can be driven by resource competition among snail intermediate hosts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
4	Reducing disease and producing food: Effects of 13 agrochemicals on snail biomass and human schistosomes. Journal of Applied Ecology, 2022, 59, 729-741.	4.0	5
5	Sublethal effects of parasitism on ruminants can have cascading consequences for ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117381119.	7.1	7
6	Metabolites from the fungal pathogen <i>Batrachochytrium dendrobatidis</i> (bd) reduce Bd load in Cuban treefrog tadpoles. Journal of Applied Ecology, 2022, 59, 2398-2403.	4.0	5
7	Interventions can shift the thermal optimum for parasitic disease transmission. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
8	Sizeâ€asymmetric competition among snails disrupts production of humanâ€infectious <i>Schistosoma mansoni</i> cercariae. Ecology, 2021, 102, e03383.	3.2	7
9	Response to Charlier et al.: Climate–Disease Feedbacks Mediated by Livestock Methane Emissions Are Plausible. Trends in Ecology and Evolution, 2021, 36, 578-579.	8.7	2
10	Asymmetric cross-strain protection for amphibians exposed to a fungal-metabolite prophylactic treatment. Biology Letters, 2021, 17, 20210207.	2.3	6
11	Reâ€emphasizing mechanism in the community ecology of disease. Functional Ecology, 2021, 35, 2376-2386.	3.6	7
12	Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics. PLoS Computational Biology, 2021, 17, e1008627.	3.2	19
13	Towards common ground in the biodiversity–disease debate. Nature Ecology and Evolution, 2020, 4, 24-33.	7.8	170
14	Infectious Diseases, Livestock, and Climate: A Vicious Cycle?. Trends in Ecology and Evolution, 2020, 35, 959-962.	8.7	10
15	Ecological and Evolutionary Challenges for Wildlife Vaccination. Trends in Parasitology, 2020, 36, 970-978.	3.3	18
16	Resource fluctuations inhibit the reproduction and virulence of the human parasite <i>Schistosoma mansoni</i> in its snail intermediate host. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192446.	2.6	5
17	Aquatic macrophytes and macroinvertebrate predators affect densities of snail hosts and local production of schistosome cercariae that cause human schistosomiasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008417.	3.0	23
18	An integrative approach to symbiont-mediated vector control for agricultural pathogens. Current Opinion in Insect Science, 2020, 39, 57-62.	4.4	14

DAVID J CIVITELLO

#	Article	IF	CITATIONS
19	A metaâ€analysis reveals temperature, dose, life stage, and taxonomy influence host susceptibility to a fungal parasite. Ecology, 2020, 101, e02979.	3.2	25
20	Synergistic China–US Ecological Research is Essential for Global Emerging Infectious Disease Preparedness. EcoHealth, 2020, 17, 160-173.	2.0	30
21	Modelling how resource competition among snail hosts affects the mollusciciding frequency and intensity needed to control human schistosomes. Functional Ecology, 2020, 34, 1678-1689.	3.6	4
22	Linking Bioenergetics and Parasite Transmission Models Suggests Mismatch Between Snail Host Density and Production of Human Schistosomes. Integrative and Comparative Biology, 2019, 59, 1243-1252.	2.0	9
23	Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2019, 2, 445-456.	23.7	362
24	Different metrics of thermal acclimation yield similar effects of latitude, acclimation duration, and body mass on acclimation capacities. Global Change Biology, 2019, 25, e3-e4.	9.5	0
25	Impacts of thermal mismatches on chytrid fungus <i>Batrachochytrium dendrobatidis</i> prevalence are moderated by life stage, body size, elevation and latitude. Ecology Letters, 2019, 22, 817-825.	6.4	35
26	Genotypic variation in parasite avoidance behaviour and other mechanistic, nonlinear components of transmission. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192164.	2.6	20
27	An interaction between climate change and infectious disease drove widespread amphibian declines. Global Change Biology, 2019, 25, 927-937.	9.5	113
28	Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nature Communications, 2018, 9, 837.	12.8	71
29	Bioenergetic theory predicts infection dynamics of human schistosomes in intermediate host snails across ecological gradients. Ecology Letters, 2018, 21, 692-701.	6.4	41
30	Temperature Drives Epidemics in a Zooplankton-Fungus Disease System: A Trait-Driven Approach Points to Transmission via Host Foraging. American Naturalist, 2018, 191, 435-451.	2.1	58
31	Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170101.	4.0	37
32	The complex drivers of thermal acclimation and breadth in ectotherms. Ecology Letters, 2018, 21, 1425-1439.	6.4	192
33	The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecology Letters, 2017, 20, 184-193.	6.4	163
34	Intraspecific and interspecific variation in thermotolerance and photoacclimation in <i>Symbiodinium</i> dinoflagellates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171767.	2.6	71
35	Habitat, predators, and hosts regulate disease in <i>Daphnia</i> through direct and indirect pathways. Ecological Monographs, 2016, 86, 393-411.	5.4	47
36	Spatial scale modulates the strength of ecological processes driving disease distributions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3359-64.	7.1	143

DAVID J CIVITELLO

#	Article	IF	CITATIONS
37	Success, failure and ambiguity of the dilution effect among competitors. Ecology Letters, 2015, 18, 916-926.	6.4	71
38	Resources, key traits and the size of fungal epidemics in <i><scp>D</scp>aphnia</i> populations. Journal of Animal Ecology, 2015, 84, 1010-1017.	2.8	39
39	The context of host competence: a role for plasticity in host–parasite dynamics. Trends in Parasitology, 2015, 31, 419-425.	3.3	96
40	Reply to Salkeld et al.: Diversity-disease patterns are robust to study design, selection criteria, and publication bias. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6262.	7.1	10
41	The Phenotypic Effects of Spontaneous Mutations in Different Environments. American Naturalist, 2015, 185, 243-252.	2.1	33
42	Predator diversity, intraguild predation, and indirect effects drive parasite transmission. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3008-3013.	7.1	92
43	Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8667-8671.	7.1	514
44	Comparative toxicities of organophosphate and pyrethroid insecticides to aquatic macroarthropods. Chemosphere, 2015, 135, 265-271.	8.2	34
45	Combining mesocosm and field experiments to predict invasive plant performance: a hierarchical Bayesian approach. Ecology, 2015, 96, 1084-1092.	3.2	16
46	Potassium enrichment stimulates the growth and reproduction of a clone of Daphnia dentifera. Oecologia, 2014, 175, 773-780.	2.0	10
47	Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature, 2014, 511, 224-227.	27.8	190
48	Disentangling the effects of exposure and susceptibility on transmission of the zoonotic parasite <i><scp>S</scp>chistosoma mansoni</i> . Journal of Animal Ecology, 2014, 83, 1379-1386.	2.8	30
49	Habitat structure and ecological drivers of disease. Limnology and Oceanography, 2014, 59, 340-348.	3.1	52
50	Potassium stimulates fungal epidemics in <i>Daphnia</i> by increasing host and parasite reproduction. Ecology, 2013, 94, 380-388.	3.2	31
51	Parasite consumption and host interference can inhibit disease spread in dense populations. Ecology Letters, 2013, 16, 626-634.	6.4	44
52	Chronic contamination decreases disease spread: a <i>Daphnia</i> –fungus–copper case study. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3146-3153.	2.6	32
53	Ecological Context Influences Epidemic Size and Parasite-Driven Evolution. Science, 2012, 335, 1636-1638.	12.6	98
54	Phylogeography of the gray fox (Urocyon cinereoargenteus) in the eastern United States. Journal of Mammalogy, 2011, 92, 283-294.	1.3	14

DAVID J CIVITELLO

#	Article	IF	CITATIONS
55	Meta-Analysis of Co-Infections in Ticks. Israel Journal of Ecology and Evolution, 2010, 56, 417-431.	0.6	11
56	Multiple paternity and kinship in the gray fox (Urocyon cinereoargenteus). Mammalian Biology, 2009, 74, 394-402.	1.5	15
57	Exotic Grass Invasion Reduces Survival of <i>Amblyomma americanum</i> and <i>Dermacentor variabilis</i> Ticks (Acari: Ixodidae). Journal of Medical Entomology, 2008, 45, 867-872.	1.8	42
58	Exotic Grass Invasion Reduces Survival ofAmblyomma americanumandDermacentor variabilisTicks (Acari: Ixodidae). Journal of Medical Entomology, 2008, 45, 867-872.	1.8	51