Anatoly F Vanin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1625242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrosonium Cation as a Cytotoxic Component of Dinitrosyl Iron Complexes with Thiol-containing Ligands (based on the Experimental Work on MCF7 Human Breast Cancer Cell Culture). Cell Biochemistry and Biophysics, 2021, 79, 93-102.	1.8	25
2	Physico-Chemistry of Dinitrosyl Iron Complexes as a Determinant of Their Biological Activity. International Journal of Molecular Sciences, 2021, 22, 10356.	4.1	20
3	How is Nitric Oxide (NO) Converted into Nitrosonium Cations (NO+) in Living Organisms? (Based on) Tj ETQq Applied Magnetic Resonance, 2020, 51, 851-876.	l 10.78431 1.2	4 rgBT /Over 15
4	What is the Mechanism of Nitric Oxide Conversion into Nitrosonium Ions Ensuring S-Nitrosating Processes in Living Organisms. Cell Biochemistry and Biophysics, 2019, 77, 279-292.	1.8	32
5	Physicochemical parameters of NO-containing gas flow affect wound healing therapy. An experimental study. European Journal of Pharmaceutical Sciences, 2019, 128, 193-201.	4.0	17
6	The Inhibiting Effect of Dinitrosyl Iron Complexes with Thiol-containing Ligands on the Growth of Endometrioid Tumours in Rats with Experimental Endometriosis. Cell Biochemistry and Biophysics, 2019, 77, 69-77.	1.8	15
7	Protective Effect of Dinitrosyl Iron Complexes with Glutathione in Red Blood Cell Lysis Induced by Hypochlorous Acid. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	17
8	EPR and Mössbauer Characteristics of Aqueous Solutions of 57Fe-Dinitrosyl Iron Complexes with Glutathione and Hydroxyl Ligands. Applied Magnetic Resonance, 2019, 50, 861-881.	1.2	3
9	ls it possible to combine photodynamic therapy and application of dinitrosyl iron complexes in the wound treatment?. Nitric Oxide - Biology and Chemistry, 2019, 83, 24-32.	2.7	4
10	Study of plasma-chemical NO-containing gas flow for treatment of wounds and inflammatory processes. Nitric Oxide - Biology and Chemistry, 2018, 73, 74-80.	2.7	16
11	EPR Characterization of Dinitrosyl Iron Complexes with Thiol-Containing Ligands as an Approach to Their Identification in Biological Objects: An Overview. Cell Biochemistry and Biophysics, 2018, 76, 3-17.	1.8	21
12	Nitrosonium lons as Constituents of Dinitrosyl Iron Complexes with Glutathione Responsible for their S-Nitrosating Activity. Interdisciplinary Journal of Microinflammation, 2018, 5, .	0.1	11
13	Dinitrosyl iron complexes with natural thiol-containing ligands in aqueous solutions: Synthesis and some physico-chemical characteristics (A methodological review). Nitric Oxide - Biology and Chemistry, 2017, 66, 1-9.	2.7	16
14	The binuclear form of dinitrosyl iron complexes with thiol-containing ligands in animal tissues. Nitric Oxide - Biology and Chemistry, 2017, 62, 1-10.	2.7	10
15	Dinitrosyl Iron Complexes with Persulfide Ligands: EPR and Optical Studies. Applied Magnetic Resonance, 2016, 47, 277-295.	1.2	3
16	Dinitrosyl iron complexes with thiol-containing ligands as a "working form―of endogenous nitric oxide. Nitric Oxide - Biology and Chemistry, 2016, 54, 15-29.	2.7	80
17	The antitumor activity of the S-nitrosoglutathione and dinitrosyl iron complex with glutathione: Comparative studies. Biophysics (Russian Federation), 2015, 60, 963-969.	0.7	11
18	Mono- and binuclear dinitrosyl iron complexes with thiol-containing ligands in various biosystems. Biophysics (Russian Federation), 2015, 60, 603-612.	0.7	6

#	Article	IF	CITATIONS
19	A comparative analysis of the effects of free and bound NO on Pro- and antioxidant systems of the blood. Biophysics (Russian Federation), 2015, 60, 278-283.	0.7	3
20	Dinitrosyl iron complexes with glutathione incorporated into a collagen matrix as a base for the design of drugs accelerating skin wound healing. European Journal of Pharmaceutical Sciences, 2015, 78, 8-18.	4.0	34
21	The delivery of dinitrosyl iron complexes into animal lungs. Biophysics (Russian Federation), 2015, 60, 284-287.	0.7	0
22	An antinitrosative system as a factor in malignant tumor resistance to the cytotoxic effect of nitrogen monoxide. Biophysics (Russian Federation), 2015, 60, 121-125.	0.7	11
23	The hypotensive effect of the nitric monoxide donor Oxacom at different routs of its administration to experimental animals. European Journal of Pharmacology, 2015, 765, 525-532.	3.5	30
24	Effect of dinitrosyl iron complexes on NO level in rat organs during endotoxin shock. Doklady Biochemistry and Biophysics, 2015, 462, 166-168.	0.9	4
25	Physicochemistry of dinitrosyl iron complexes with thiolate ligands underlying their beneficial effect in endometriosis. Biophysics (Russian Federation), 2014, 59, 628-634.	0.7	5
26	Nitric oxide and electrogenic metals (Ca, Na, K) in epidermal cells. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2014, 8, 343-348.	0.4	1
27	Dinitrosyl iron complexes with glutathione suppress experimental endometriosis in rats. European Journal of Pharmacology, 2014, 727, 140-147.	3.5	27
28	Antitumor activity of dinitrosyl iron complexes with glutathione. Biophysics (Russian Federation), 2014, 59, 415-419.	0.7	12
29	The effect of dinitrosyl iron complexes with glutathione and S-nitrosoglutathione on the development of experimental endometriosis in rats: A comparative studies. European Journal of Pharmacology, 2014, 741, 37-44.	3.5	16
30	EPR Characterization of Mononuclear Dinitrosyl Iron Complex with Persulfide as a New Representative of Dinitrosyl Iron Complexes in Biological Systems: an Overview. Applied Magnetic Resonance, 2014, 45, 375-387.	1.2	5
31	Asymmetry within the Fe(NO)2 moiety of dithiolate dinitrosyl iron complexes. Inorganica Chimica Acta, 2014, 418, 42-50.	2.4	6
32	Redox activities of mono- and binuclear forms of low-molecular and protein-bound dinitrosyl iron complexes with thiol-containing ligands. Nitric Oxide - Biology and Chemistry, 2014, 40, 100-109.	2.7	11
33	Dinitrosyl iron complexes with glutathione largely relieve rats of experimental endometriosis. Biophysics (Russian Federation), 2013, 58, 222-227.	0.7	9
34	Physicochemical features of dinitrosyl iron complexes with natural thiol-containing ligands underlying the biological activities of these complexes. Biophysics (Russian Federation), 2013, 58, 103-109.	0.7	2
35	Formation of a new type of dinitrosyl iron complexes bound to cysteine modified with methylglyoxal. Biophysics (Russian Federation), 2013, 58, 172-177.	0.7	7
36	Transformations of dinitrosyl iron complexes in an isolated rat heart after introduction of this substance into perfusion medium. Biophysics (Russian Federation), 2013, 58, 206-211.	0.7	1

#	Article	IF	CITATIONS
37	Introduction of dinitrosyl iron complexes with thiol-containing ligands into animal organism by inhalation method. Biophysics (Russian Federation), 2013, 58, 216-221.	0.7	2
38	Estimation of some molecular effects of gaseous nitrogen oxide on human blood in vitro. Biophysics (Russian Federation), 2013, 58, 689-692.	0.7	3
39	Features of the metabolism of nitric oxide in normal state and inflammation. Biophysics (Russian) Tj ETQq1 1 0.7	'84314 rgE 0.7	BT <u>/</u> Overlock
40	Redox conversions of dinitrosyl iron complexes with natural thiol-containing ligands. Nitric Oxide - Biology and Chemistry, 2013, 35, 35-41.	2.7	17
41	Nitrite contamination in hypotensive preparations of dinitrosyl iron complexes with glutathione. Journal of Applied Biomedicine, 2013, 11, 223-233.	1.7	4
42	A simple protocol for the synthesis of dinitrosyl iron complexes with glutathione: EPR, optical, chromatographic and biological characterization of reaction products. Nitric Oxide - Biology and Chemistry, 2013, 35, 110-115.	2.7	35
43	Dinitrosyl iron complexes with glutathione as NO and NO+ donors. Nitric Oxide - Biology and Chemistry, 2013, 29, 4-16.	2.7	50
44	Metformin regulates glycemic homeostasis in patients with type 2 diabetes mellitus as an NO donor. Diabetes Mellitus, 2013, , 41-45.	1.9	0
45	Can Summary Nitrite+Nitrate Content Serve as an Indicator of NO Synthesis Intensity in Body Tissues?. Bulletin of Experimental Biology and Medicine, 2012, 153, 840-843.	0.8	10
46	Hypotensive effect of Oxacom® containing a dinitrosyl iron complex with glutathione: Animal studies and clinical trials on healthy volunteers. Nitric Oxide - Biology and Chemistry, 2012, 26, 148-156.	2.7	67
47	Distribution and pharmacokinetics of dinitrosyl iron complexes in rat organs. Biophysics (Russian) Tj ETQq1 1 0.7	784314 rgl 0.7	BT ₅ Overlock
48	Dinitrosyl iron complexes with cysteine suppress the development of experimental endometriosis in rats. Biophysics (Russian Federation), 2012, 57, 87-89.	0.7	8
49	Variation of nitric oxide content regulates the development of apoptosis in the retina. Biophysics (Russian Federation), 2012, 57, 229-232.	0.7	1
50	Sources of divalent sulfur allow recovery of the Fnr [4Fe-4S]2+ center in Escherichia coli incubated with nitric oxide donors. Biophysics (Russian Federation), 2012, 57, 166-169.	0.7	3
51	Antidiabetes drug metformin is a donor of nitric oxide: EPR measurement of efficiency. Biophysics (Russian Federation), 2011, 56, 1088-1095.	0.7	5
52	Intermittent hypoxia conditioning prevents endothelial dysfunction and improves nitric oxide storage in spontaneously hypertensive rats. Experimental Biology and Medicine, 2011, 236, 867-873.	2.4	25
53	Dinitrosyl iron complexes with thiol-containing ligands and apoptosis: Studies with HeLa cell cultures. Nitric Oxide - Biology and Chemistry, 2011, 24, 151-159.	2.7	47
54	Penile erectile activity of dinitrosyl iron complexes with thiol-containing ligands. Nitric Oxide - Biology and Chemistry, 2011, 24, 217-223.	2.7	27

#	Article	IF	CITATIONS
55	Electronic and Spatial Structures of Water-Soluble Dinitrosyl Iron Complexes with Thiol-Containing Ligands Underlying Their Ability to Act as Nitric Oxide and Nitrosonium Ion Donors. Journal of Biophysics, 2011, 2011, 1-14.	0.8	27
56	Interaction of the nitric oxide signaling system with the Sphingomyelin cycle and Peroxidation on transmission of toxic signal of tumor necrosis factor-α in ischemia-reperfusion. Biochemistry (Moscow), 2011, 76, 1197-1209.	1.5	10
57	Accumulation of magnetic nanoparticles in plants grown on soils of Apsheron peninsula. Biophysics (Russian Federation), 2011, 56, 316-322.	0.7	13
58	Regulation of the functional and mechanical properties of platelet and red blood cells by nitric oxide donors. Biophysics (Russian Federation), 2011, 56, 237-242.	0.7	12
59	Prospects of designing medicines with diverse therapeutic activity on the basis of dinitrosyl iron complexes with thiol-containing ligands. Biophysics (Russian Federation), 2011, 56, 268-275.	0.7	8
60	Prospects of using magnetic nanoparticles to potentiate the anticarcinogenic action of dinitrosyl iron complexes with thiol ligands. Biophysics (Russian Federation), 2011, 56, 832-835.	0.7	1
61	Effect of dinitrosyl iron complexes with glutathione on hemorrhagic shock followed by saline treatment. European Journal of Pharmacology, 2011, 662, 40-46.	3.5	27
62	Autowaves as a basis for spatial and temporal regulation of the biological action of nitric oxide in living systems (a hypothesis). Russian Journal of General Chemistry, 2011, 81, 243-246.	0.8	0
63	Determination of In Vivo Nitric Oxide Levels in Animal Tissues Using a Novel Spin Trapping Technology. Methods in Molecular Biology, 2011, 704, 135-149.	0.9	11
64	Protective effect of dinitrosyl-iron complexes with glutathione in rat myocardial regional ischemia: A microdialysis assay study. Doklady Biochemistry and Biophysics, 2010, 432, 106-109.	0.9	8
65	Reversible NO-catalyzed destruction of the Fe-S cluster of the FNR[4Fe-4S]2+ transcription factor: A way to regulate the aidB gene activity in Escherichia coli cells cultured under anaerobic conditions. Doklady Biochemistry and Biophysics, 2010, 435, 283-286.	0.9	5
66	Direct EPR Detection of Nitric Oxide in Mice Infected with the Pathogenic Mycobacterium Mycobacterium tuberculosis. Applied Magnetic Resonance, 2010, 38, 95-104.	1.2	1
67	Detection of autowave distribution of the concentration of a dinitrosyl iron complex with glutathione formed in an aqueous solution of S-nitrosoglutathione after addition of a mixture of glutathione and ferrous iron. Biophysics (Russian Federation), 2010, 55, 5-12.	0.7	7
68	Detection of nitrite and nitrosocompounds in chemical systems and biological liquids by the calorimetric method. Biophysics (Russian Federation), 2010, 55, 77-86.	0.7	9
69	Formation of dinitrosyl iron complexes in cardiac mitochondria. Biophysics (Russian Federation), 2010, 55, 406-411.	0.7	5
70	Dinitrosyl iron complexes with glutathione in rat myocardial tissue during regional ischemia and postischemic reperfusion. Biophysics (Russian Federation), 2010, 55, 999-1005.	0.7	3
71	On the nature of a compound formed from dinitrosyl-iron complexes with cysteine and responsible for a long-lasting vasorelaxation. Nitric Oxide - Biology and Chemistry, 2010, 22, 266-274.	2.7	25
72	Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: Electron paramagnetic resonance and optical studies. Nitric Oxide - Biology and Chemistry, 2010, 23, 136-149.	2.7	83

#	Article	IF	CITATIONS
73	Autowave distribution of nitric oxide and its endogenous derivatives in biosystems strongly enhances their biological effects: A working hypothesis. Nitric Oxide - Biology and Chemistry, 2010, 23, 175-180.	2.7	5
74	Nitrite as regulator of hypoxic signaling in mammalian physiology. Medicinal Research Reviews, 2009, 29, 683-741.	10.5	373
75	Effects of dinitrosyl iron complex with glutathione and its components on ischemic rat heart during reperfusion. Biophysics (Russian Federation), 2009, 54, 709-713.	0.7	5
76	Study of the nitric oxide level in the tissues of rat organs and its changes after a long-term inhalation of the air with increased NO content. Doklady Biochemistry and Biophysics, 2009, 425, 110-113.	0.9	4
77	Dinitrosyl iron complexes with thiolate ligands: Physico-chemistry, biochemistry and physiology. Nitric Oxide - Biology and Chemistry, 2009, 21, 1-13.	2.7	195
78	NO spin trapping in biological systems. Frontiers in Bioscience - Landmark, 2009, Volume, 4427.	3.0	10
79	Nitric oxide stores in coronary blood vessels of dogs with metabolic syndrome. FASEB Journal, 2009, 23, 628.8.	0.5	0
80	Antagonist of M1 Muscarinic Acetylcholine Receptor Prevents Neurotoxicity Induced by Amphetamine via Nitric Oxide Pathway. Annals of the New York Academy of Sciences, 2008, 1139, 172-176.	3.8	8
81	Quasi-adaptive response to alkylating agents and Ada-protein functions in Escherichia coli. Russian Journal of Genetics, 2008, 44, 21-26.	0.6	0
82	Beneficial effect of dinitrosyl iron complexes with thiol ligands on the rat penile cavernous bodies. Biophysics (Russian Federation), 2008, 53, 153-157.	0.7	8
83	Effects of the donor of nitric oxide, dinitrosyl iron complex with glutathione, on blood circulation in healthy animals. Biophysics (Russian Federation), 2008, 53, 442-447.	0.7	0
84	Interaction of reactive oxygen and nitrogen species with albumin- and methemoglobin-bound dinitrosyl-iron complexes. Nitric Oxide - Biology and Chemistry, 2008, 18, 37-46.	2.7	79
85	Decomposition of water-soluble mononitrosyl iron complexes with dithiocarbamates and of dinitrosyl iron complexes with thiol ligands in animal organisms. Nitric Oxide - Biology and Chemistry, 2008, 18, 195-203.	2.7	3
86	Interaction of iron ions with oxygen or nitrogen monoxide in chromosomes triggers synchronous expression/suppression oscillations of compact gene groups ("genomewide oscillationâ€): Hypothesis. Nitric Oxide - Biology and Chemistry, 2008, 18, 147-152.	2.7	4
87	Detection of basal NO production in rat tissues using iron–dithiocarbamate complexes. Nitric Oxide - Biology and Chemistry, 2008, 18, 279-286.	2.7	23
88	Estimation of nitric oxide level in vivo by microdialysis with water-soluble iron-N-methyl-d-dithiocarbamate complexes as NO traps: A novel approach to nitric oxide spin trapping in animal tissues. Nitric Oxide - Biology and Chemistry, 2008, 19, 338-344.	2.7	7
89	Dinitrosyl Iron Complexes Bind with Hemoglobin as Markers of Oxidative Stress. Methods in Enzymology, 2008, 436, 445-461.	1.0	44
90	Reduction enhances yields of nitric oxide trapping by iron–diethyldithiocarbamate complex in biological systems. Nitric Oxide - Biology and Chemistry, 2007, 16, 71-81.	2.7	25

#	Article	IF	CITATIONS
91	Dinitrosyl–iron complexes with thiol-containing ligands: Spatial and electronic structures. Nitric Oxide - Biology and Chemistry, 2007, 16, 82-93.	2.7	49
92	Protein-bound dinitrosyl–iron complexes appearing in blood of rabbit added with a low-molecular dinitrosyl–iron complex: EPR studies. Nitric Oxide - Biology and Chemistry, 2007, 16, 286-293.	2.7	34
93	Vasorelaxing activity of stable powder preparations of dinitrosyl iron complexes with cysteine or glutathione ligands. Nitric Oxide - Biology and Chemistry, 2007, 16, 322-330.	2.7	46
94	Long-lasting hypotensive action of stable preparations of dinitrosyl-iron complexes with thiol-containing ligands in conscious normotensive and hypertensive rats. Nitric Oxide - Biology and Chemistry, 2007, 16, 413-418.	2.7	63
95	DNICs: physico-chemical properties and their observations in cells and tissues. , 2007, , 19-73.		9
96	Hypotensive, vasodilatory and anti-aggregative properties of dinitrosyl-iron complexes. , 2007, , 75-96.		1
97	Mononitrosyl-iron complexes with dithiocarbamate ligands: physico-chemical properties. , 2007, , 383-405.		4
98	Nitric oxide radicals and their reactions. , 2007, , 3-16.		5
99	Low-molecular-weight S-nitrosothiols. , 2007, , 173-199.		3
100	Nitrite as endothelial NO donor under anoxia. , 2007, , 291-312.		2
101	Chemical equilibria between S-nitrosothiols and dinitrosyl iron complexes with thiol-containing ligands. , 2007, , 223-252.		1
102	Antioxidant and prooxidant action of nitric oxide donors and metabolites. Biophysics (Russian) Tj ETQq0 0 0 rgB1	- Qverlocl	₹ 10 Tf 50 30
103	Interaction between albumin-bound dinitrosyl iron complexes and reactive oxygen species. Biophysics (Russian Federation), 2007, 52, 336-339.	0.7	5
104	Dinitrosyl iron complexes with thiol ligands promote skin wound healing in animals. Biophysics (Russian Federation), 2007, 52, 515-520.	0.7	24
105	Nitric oxide synthase reduces nitrite to NO under anoxia. Cellular and Molecular Life Sciences, 2007, 64, 96-103.	5.4	143
106	Low-molecular dinitrosyl iron complexes can catalyze the degradation of active centers of iron–sulfur proteins. , 2007, , 119-137.		1
107	Formation and Role of Nitric Oxide Stores in Adaptation to Hypoxia. , 2006, 578, 35-40.		6
108	Why iron–dithiocarbamates ensure detection of nitric oxide in cells and tissues. Nitric Oxide - Biology and Chemistry, 2006, 15, 295-311.	2.7	45

#	Article	IF	CITATIONS
109	NO trapping in biological systems with a functionalized zeolite network. Nitric Oxide - Biology and Chemistry, 2006, 15, 233-240.	2.7	6
110	The interaction between dinitrosy iron complexes and intermediates of oxidative stress. Biophysics (Russian Federation), 2006, 51, 423-428.	0.7	12
111	Autowave mode of the functioning of the nitric oxide + free iron + thiols system as a basis for control of the biological action of nitric oxide and its endogenous compounds. Biophysics (Russian) Tj ETQq1	1 0.7 84 314	rg&T /Overlo
112	Nitrite protonation as a necessary stage in the generation of nitric oxide from nitrite in biological systems. Biophysics (Russian Federation), 2006, 51, 853-859.	0.7	2
113	Nitric Oxide and Oxidative Stress in the Brain of Rats Exposed In Utero to Cocaine. Annals of the New York Academy of Sciences, 2006, 1074, 632-642.	3.8	35
114	Adaptation to hypoxia prevents disturbances in cerebral blood flow during neurodegenerative process. Bulletin of Experimental Biology and Medicine, 2006, 142, 169-172.	0.8	17
115	Mechanism of adaptation of the vascular system to chronic changes in nitric oxide level in the organism. Bulletin of Experimental Biology and Medicine, 2006, 142, 670-674.	0.8	7
116	Memory impairments and oxidative stress in the hippocampus of in-utero cocaine-exposed rats. NeuroReport, 2005, 16, 1217-1221.	1.2	33
117	7-Nitroindazole, nNOS inhibitor, attenuates amphetamine-induced amino acid release and nitric oxide generation but not lipid peroxidation in the rat brain. Journal of Neural Transmission, 2005, 112, 779-788.	2.8	9
118	The relation between sphingomyelinase activity, lipid peroxide oxidation and NO-releasing in mice liver and brain. FEBS Letters, 2005, 579, 5571-5576.	2.8	19
119	Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric Oxide - Biology and Chemistry, 2005, 12, 210-219.	2.7	206
120	Endogenous Superoxide Production and the Nitrite/Nitrate Ratio Control the Concentration of Bioavailable Free Nitric Oxide in Leaves. Journal of Biological Chemistry, 2004, 279, 24100-24107.	3.4	86
121	Interaction of Oxoferrylmyoglobin and Dinitrosyl-Iron Complexes. Biochemistry (Moscow), 2004, 69, 569-574.	1.5	23
122	Genetic Signal Transduction by Nitrosyl-Iron Complexes in Escherichia coli. Biochemistry (Moscow), 2004, 69, 883-889.	1.5	7
123	Comparative Effects of NO-Synthase Inhibitor and NMDA Antagonist on Generation of Nitric Oxide and Release of Amino Acids and Acetylcholine in the Rat Brain Elicited by Amphetamine Neurotoxicity. Annals of the New York Academy of Sciences, 2004, 1025, 221-230.	3.8	8
124	Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Experimental Neurology, 2004, 186, 235-241.	4.1	93
125	The mechanisms of S-nitrosothiol decomposition catalyzed by iron. Nitric Oxide - Biology and Chemistry, 2004, 10, 60-73.	2.7	73
126	Detection and evaluation of NO stores in awake rats. Bulletin of Experimental Biology and Medicine, 2003, 136, 26-29.	0.8	3

#	Article	IF	CITATIONS
127	Detection and Description of Various Stores of Nitric Oxide Store in Vascular Wall. Bulletin of Experimental Biology and Medicine, 2003, 136, 226-230.	0.8	14
128	Inhibition of arterial contraction by dinitrosyl–iron complexes: critical role of the thiol ligand in determining rate of nitric oxide (NO) release and formation of releasable NO stores by S-nitrosation. Biochemical Pharmacology, 2003, 66, 2365-2374.	4.4	35
129	The influence of anticonvulsant and antioxidant drugs on nitric oxide level and lipid peroxidation in the rat brain during penthylenetetrazole-induced epileptiform model seizures. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 487-492.	4.8	83
130	Activation of soluble guanylate cyclase by NO donors—S-nitrosothiols, and dinitrosyl-iron complexes with thiol-containing ligands. Nitric Oxide - Biology and Chemistry, 2003, 8, 155-163.	2.7	65
131	Antiâ€inflammatory effects of tetrahydrobiopterin on early rejection in renal allografts: modulation of inducible nitric oxide synthase. FASEB Journal, 2002, 16, 1135-1137.	0.5	48
132	Exogenous ferrous iron is required for the nitric oxide-catalysed destruction of the iron–sulphur centre in adrenodoxin. Biochemical Journal, 2002, 368, 633-639.	3.7	23
133	Iron dithiocarbamate as spin trap for nitric oxide detection: Pitfalls and successes. Methods in Enzymology, 2002, 359, 27-42.	1.0	72
134	Evidence that intrinsic iron but not intrinsic copper determines S-nitrosocysteine decomposition in buffer solution. Nitric Oxide - Biology and Chemistry, 2002, 7, 194-209.	2.7	42
135	In vivo nitric oxide transfer of a physiological NO carrier, dinitrosyl dithiolato iron complex, to target complex. Biochemical Pharmacology, 2002, 63, 485-493.	4.4	67
136	Derivatives of benzotetrazine-1,3-dioxide are new NO-donors, activators of soluble guanylate cyclase, and inhibitors of platelet aggregation. Biochemistry (Moscow), 2002, 67, 329-334.	1.5	15
137	Dizocilpine inhibits amphetamine-induced formation of nitric oxide and amphetamine-induced release of amino acids and acetylcholine in the rat brain. Neurochemical Research, 2002, 27, 229-235.	3.3	7
138	Nitric Oxide Storage in the Cardiovascular System. Biology Bulletin, 2002, 29, 477-486.	0.5	5
139	Nitric Oxide Initiates Iron Binding to Neocuproine. Nitric Oxide - Biology and Chemistry, 2001, 5, 166-175.	2.7	6
140	Role of nitric oxide and lipid peroxidation in mechanisms of febrile convulsions in Wistar rat pups. Bulletin of Experimental Biology and Medicine, 2001, 131, 47-49.	0.8	5
141	Activation of the Escherichia coli SoxRS-regulon by nitric oxide and its physiological donors. Biochemistry (Moscow), 2001, 66, 984-988.	1.5	30
142	Novel synthetic analogue of ACTH 4–10 (Semax) but not glycine prevents the enhanced nitric oxide generation in cerebral cortex of rats with incomplete global ischemia. Brain Research, 2001, 894, 145-149.	2.2	32
143	Antioxidant capacity of mononitrosyl-iron-dithiocarbamate complexes: implications for NO trapping. Free Radical Biology and Medicine, 2001, 30, 813-824.	2.9	42
144	Electron paramagnetic resonance spectroscopy with N-methyl-D-glucamine dithiocarbamate iron complexes distinguishes nitric oxide and nitroxyl anion in a redox-dependent manner: applications in identifying nitrogen monoxide products from nitric oxide synthase. Free Radical Biology and Medicine, 2000, 29, 793-797.	2.9	64

#	Article	IF	CITATIONS
145	Redox properties of iron–dithiocarbamates and their nitrosyl derivatives: implications for their use as traps of nitric oxide in biological systems. Biochimica Et Biophysica Acta - General Subjects, 2000, 1474, 365-377.	2.4	70
146	In Vivodistribution and behavior of paramagnetic dinitrosyl dithiolato iron complex in the abdomen of mouse. Free Radical Research, 1999, 31, 525-534.	3.3	31
147	Induction of the SOS DNA repair response in Escherichia coli by nitric oxide donating agents" dinitrosyl iron complexes with thiol-containing ligands and S-nitrosothiols. FEBS Letters, 1999, 454, 177-180.	2.8	34
148	Dinitrosyl iron complexes with thiol-containing ligands and S -nitroso-D,L -penicillamine as inductors of heat shock protein synthesis in H35 hepatoma cells. FEBS Letters, 1999, 455, 179-182.	2.8	36
149	[29] Iron diethyldithiocarbamate as spin trap for nitric oxide detection. Methods in Enzymology, 1999, 301, 269-279.	1.0	62
150	NO-Dependent Mechanisms of Adaptation to Hypoxia. Nitric Oxide - Biology and Chemistry, 1999, 3, 105-113.	2.7	54
151	Production and Storage of Nitric Oxide in Adaptation to Hypoxia. Nitric Oxide - Biology and Chemistry, 1999, 3, 393-401.	2.7	46
152	The 2.03 Signal as an Indicator of Dinitrosyl–Iron Complexes with Thiol-Containing Ligands. Nitric Oxide - Biology and Chemistry, 1998, 2, 224-234.	2.7	111
153	EPR Detection and Biological Implications of Nitrosyl Nonheme Iron Complexes. , 1998, , 49-82.		18
154	Iron Catalyzes both Decomposition and Synthesis ofS-Nitrosothiols: Optical and Electron Paramagnetic Resonance Studies. Nitric Oxide - Biology and Chemistry, 1997, 1, 191-203.	2.7	170
155	Effect of nitroso compounds on Na/K-ATPase. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1321, 243-251.	1.0	51
156	Complexes of Fe2+ with diethyldithiocarbamate or N-methyl-d-glucamine dithiocarbamate as traps of nitric oxide in animal tissues: comparative investigations. Biochimica Et Biophysica Acta - General Subjects, 1997, 1336, 225-234.	2.4	85
157	Nitric oxide donor induces HSP70 accumulation in the heart and in cultured cells. FEBS Letters, 1996, 391, 21-23.	2.8	74
158	Physical properties of dinitrosyl iron complexes with thiol-containing ligands in relation with their vasodilator activity. BBA - Proteins and Proteomics, 1996, 1295, 5-12.	2.1	87
159	Differences in NO generation during heat shock in genetically different populations of rats. Bulletin of Experimental Biology and Medicine, 1996, 121, 572-575.	0.8	5
160	Estimation of accumulated dose of radiation by method of ESR-spectrometry of dental enamel of mammals. Applied Radiation and Isotopes, 1996, 47, 1321-1328.	1.5	27
161	Endothelial function and nitric oxide production in rats adapted to intermittent hypoxia. Bulletin of Experimental Biology and Medicine, 1995, 120, 1117-1120.	0.8	4
162	S-Nitrosation of Serum Albumin by Dinitrosyl-Iron Complex. Journal of Biological Chemistry, 1995, 270, 29244-29249.	3.4	233

#	Article	IF	CITATIONS
163	The influence of antioxidants and cycloheximide on the level of nitric oxide in the livers of mice in vivo. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1269, 19-24.	4.1	33
164	Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Letters, 1995, 370, 159-162.	2.8	81
165	Increased generation of nitric oxide in tissues of rats following their adaptation to short-term stress (An EPR study). Bulletin of Experimental Biology and Medicine, 1994, 117, 243-245.	0.8	4
166	Biotransformation of Sodium Nitroprusside into Dinitrosyl Iron Complexes in Tissue of Ascites Tumors of Mice. Biochemical and Biophysical Research Communications, 1994, 202, 168-173.	2.1	13
167	EPR Evidence of Nitric Oxide Production by the Regenerating Rat Liver. Biochemical and Biophysical Research Communications, 1994, 202, 571-576.	2.1	84
168	Nitric oxide promotes seizure activity in kainate-treated rats. NeuroReport, 1994, 5, 2325-2328.	1.2	138
169	Enhancement of nitric oxide synthesis in the aorta wall in experimental myocardial infarction. Bulletin of Experimental Biology and Medicine, 1993, 116, 929-931.	0.8	1
170	Enzymic and nonenzymic release of NO accounts for the vasodilator activity of the metabolites of CAS 936, a novel long-acting sydnonimine derivative. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 347, 92-100.	3.0	19
171	Formation and Release of Dinitrosyl Iron Complexes by Endothelial Cells. Biochemical and Biophysical Research Communications, 1993, 196, 1303-1308.	2.1	76
172	Iron potentiates bacterial lipopolysaccharide-induced nitric oxide formation in animal organs. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1176, 240-244.	4.1	51
173	The relationship between l-arginine-dependent nitric oxide synthesis, nitrite release and dinitrosyl-iron complex formation by activated macrophages. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1177, 37-42.	4.1	82
174	Gamma-irradiation potentiates L-arginine-dependent nitric oxide formation in mice. Biochemical and Biophysical Research Communications, 1992, 186, 1423-1428.	2.1	55
175	The source of non-heme iron that binds nitric oxide in cultivated macrophages. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 275-279.	4.1	54
176	Quantification of nitric oxide in biological samples by electron spin resonance spectroscopy. Methods, 1992, 1, 165-173.	0.5	45
177	EPR evidence for nitric oxide production from guanidino nitrogens of l-arginine in animal tissues in vivo. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1099, 233-237.	1.0	99
178	Effect of diethyldithiocarbamate on the activity of nitric oxide-releasing vasodilators. European Journal of Pharmacology, 1992, 212, 125-128.	3.5	32
179	Similarity between the vasorelaxing activity of dinitrosyl iron cysteine complexes and endothelium-derived relaxing factor. European Journal of Pharmacology, 1992, 211, 313-317.	3.5	99
180	Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands. FEBS Letters, 1991, 289, 1-3.	2.8	128

#	Article	IF	CITATIONS
181	The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron(II) complex is stored in a protein-bound form in vascular tissue and is released by thiols. FEBS Letters, 1991, 294, 252-256.	2.8	153
182	Effect of riboflavin on hypotesisive activity of dinitrosyl iron complex with thiosulphate. European Journal of Pharmacology, 1991, 203, 325-326.	3.5	3
183	On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Analytical Biochemistry, 1991, 199, 142-146.	2.4	175
184	Nitric oxide formation in activated macrophages. Bulletin of Experimental Biology and Medicine, 1991, 111, 765-768.	0.8	2
185	Dilator action of Fe2+-citrate complex on the rat caudal artery perfused in vitro. Bulletin of Experimental Biology and Medicine, 1990, 109, 478-481.	0.8	1
186	Nitric oxide formation in animal tissues during inflammation. Bulletin of Experimental Biology and Medicine, 1989, 107, 35-38.	0.8	4
187	Studies on the conformational changes of metalloproteins induced by electrons in water-ethylene glycol solutions at low temperatures. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1975, 379, 512-516.	1.7	14
188	The electronic and three-dimensional structure of the paramagnetic dinitrosyl complexes of ferrous iron. Journal of Structural Chemistry, 1971, 12, 230-233.	1.0	0