B Kevin Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621593/publications.pdf

Version: 2024-02-01

41344 34986 10,277 136 49 98 citations h-index g-index papers 144 144 144 11548 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evaluation of clinical and genetic factors in the population pharmacokinetics of carbamazepine. British Journal of Clinical Pharmacology, 2021, 87, 2572-2588.	2.4	11
2	Assessing technical and biological variation in SWATH-MS-based proteomic analysis of chronic lymphocytic leukaemia cells. Scientific Reports, 2021, 11, 2932.	3.3	5
3	Investigating dihydroorotate dehydrogenase inhibitor mediated mitochondrial dysfunction in hepatic in vitro models. Toxicology in Vitro, 2021, 72, 105096.	2.4	10
4	Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Archives of Toxicology, 2021, 95, 2413-2430.	4.2	2
5	Gene Signatures Reduce the Stress of Preclinical Drug Hepatotoxicity Screening. Hepatology, 2021, 74, 513-515.	7.3	2
6	Deciphering Adverse Drug Reactions: <i>In Vitro</i> Priming and Characterization of Vancomycin-Specific T Cells From Healthy Donors Expressing HLA-A*32:01. Toxicological Sciences, 2021, 183, 139-153.	3.1	9
7	Pharmacological Activation of Nrf2 Enhances Functional Liver Regeneration. Hepatology, 2021, 74, 973-986.	7.3	29
8	Systems analysis of miRNA biomarkers to inform drug safety. Archives of Toxicology, 2021, 95, 3475-3495.	4.2	14
9	Definition of the Chemical and Immunological Signals Involved in Drug-Induced Liver Injury. Chemical Research in Toxicology, 2020, 33, 61-76.	3.3	17
10	Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nature Reviews Drug Discovery, 2020, 19, 131-148.	46.4	153
11	Characterization of Clozapine-Responsive Human T Cells. Journal of Immunology, 2020, 205, 2375-2390.	0.8	9
12	Safety perspectives on presently considered drugs for the treatment of COVIDâ€19. British Journal of Pharmacology, 2020, 177, 4353-4374.	5 . 4	17
13	Cell Membrane Transporters Facilitate the Accumulation of Hepatocellular Flucloxacillin Protein Adducts: Implication in Flucloxacillin-Induced Liver Injury. Chemical Research in Toxicology, 2020, 33, 2939-2943.	3.3	7
14	The utility of a differentiated preclinical liver model, HepaRG cells, in investigating delayed toxicity via inhibition of mitochondrial-replication induced by fialuridine. Toxicology and Applied Pharmacology, 2020, 403, 115163.	2.8	8
15	CDDO-imidazolide Targets Multiple Amino Acid Residues on the Nrf2 Adaptor, Keap1. Journal of Medicinal Chemistry, 2020, 63, 9965-9976.	6.4	28
16	HLA DRB1*15:01-DQB1*06:02-Restricted Human CD4+ T Cells Are Selectively Activated With Amoxicillin-Peptide Adducts. Toxicological Sciences, 2020, 178, 115-126.	3.1	14
17	Alternatively activated macrophages promote resolution of necrosis following acute liver injury. Journal of Hepatology, 2020, 73, 349-360.	3.7	97
18	A Noninvasive Imaging Toolbox Indicates Limited Therapeutic Potential of Conditionally Activated Macrophages in a Mouse Model of Multiple Organ Dysfunction. Stem Cells International, 2019, 2019, 1-13.	2.5	7

#	Article	IF	Citations
19	Differential toxic effects of bile acid mixtures in isolated mitochondria and physiologically relevant HepaRG cells. Toxicology in Vitro, 2019, 61, 104595.	2.4	16
20	Exosomal Transport of Hepatocyteâ€Derived Drugâ€Modified Proteins to the Immune System. Hepatology, 2019, 70, 1732-1749.	7.3	33
21	Acute Metabolic Switch Assay Using Glucose/Galactose Medium in HepaRG Cells to Detect Mitochondrial Toxicity. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 80, e76.	1.1	12
22	Stem cell models as an <i>in vitro</i> model for predictive toxicology. Biochemical Journal, 2019, 476, 1149-1158.	3.7	21
23	Dapsone―and nitroso dapsoneâ€specific activation of T cells from hypersensitive patients expressing the risk allele HLAâ€B*13:01. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1533-1548.	5 . 7	37
24	Characterisation of the NRF2 transcriptional network and its response to chemical insult in primary human hepatocytes: implications for prediction of drug-induced liver injury. Archives of Toxicology, 2019, 93, 385-399.	4.2	23
25	Characterization of Healthy Donor-Derived T-Cell Responses Specific to Telaprevir Diastereomers. Toxicological Sciences, 2019, 168, 597-609.	3.1	3
26	Application of in Vitro T Cell Assay Using Human Leukocyte Antigen-Typed Healthy Donors for the Assessment of Drug Immunogenicity. Chemical Research in Toxicology, 2018, 31, 165-167.	3.3	16
27	Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms. Archives of Toxicology, 2018, 92, 557-569.	4.2	35
28	\hat{l}^2 -Lactam hypersensitivity involves expansion of circulating and skin-resident TH22Âcells. Journal of Allergy and Clinical Immunology, 2018, 141, 235-249.e8.	2.9	34
29	Kinetic characterization of bile salt transport by human NTCP (SLC10A1). Toxicology in Vitro, 2018, 46, 189-193.	2.4	16
30	Risk stratification after paracetamol overdose using mechanistic biomarkers: results from two prospective cohort studies. The Lancet Gastroenterology and Hepatology, 2018, 3, 104-113.	8.1	99
31	The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget, 2018, 9, 27104-27116.	1.8	40
32	Science-based assessment of source materials for cell-based medicines: report of a stakeholders workshop. Regenerative Medicine, 2018, 13, 935-944.	1.7	12
33	HLA-A*33:03-Restricted Activation of Ticlopidine-Specific T-Cells from Human Donors. Chemical Research in Toxicology, 2018, 31, 1022-1024.	3.3	9
34	Human OATP1B1 (SLCO1B1) transports sulfated bile acids and bile salts with particular efficiency. Toxicology in Vitro, 2018, 52, 189-194.	2.4	12
35	TEMPORARY REMOVAL: Reference intervals for putative biomarkers of drug-induced liver injury and liver regeneration in healthy human volunteers. Journal of Hepatology, 2018, , .	3.7	4
36	The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicology in Vitro, 2018, 53, 136-147.	2.4	33

#	Article	IF	CITATIONS
37	Model-based identification of TNFα-induced IKKβ-mediated and lκBα-mediated regulation of NFκB signal transduction as a tool to quantify the impact of drug-induced liver injury compounds. Npj Systems Biology and Applications, 2018, 4, 23.	3.0	19
38	Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile. Archives of Toxicology, 2017, 91, 439-452.	4.2	98
39	Towards better models and mechanistic biomarkers for drug-induced gastrointestinal injury. , 2017, 172, 181-194.		19
40	Identification of drug- and drug-metabolite immune responses originating from both naive and memory T cells. Journal of Allergy and Clinical Immunology, 2017, 140, 578-581.e5.	2.9	10
41	Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance–based detection in vivo. Cytotherapy, 2017, 19, 555-569.	0.7	44
42	Definition of the Nature and Hapten Threshold of the \hat{I}^2 -Lactam Antigen Required for T Cell Activation In Vitro and in Patients. Journal of Immunology, 2017, 198, 4217-4227.	0.8	54
43	Donor-Dependent and Other Nondefined Factors Have Greater Influence on the Hepatic Phenotype Than the Starting Cell Type in Induced Pluripotent Stem Cell Derived Hepatocyte-Like Cells. Stem Cells Translational Medicine, 2017, 6, 1321-1331.	3.3	16
44	Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 767-782.	3.3	30
45	Dapsone and Nitroso Dapsone Activation of NaıÌ^ve T-Cells from Healthy Donors. Chemical Research in Toxicology, 2017, 30, 2174-2186.	3.3	18
46	Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. Npj Regenerative Medicine, 2017, 2, 28.	5.2	47
47	Circulating levels of miR-122 increase post-mortem, particularly following lethal dosing with pentobarbital sodium: implications for pre-clinical liver injury studies. Toxicology Research, 2017, 6, 406-411.	2.1	3
48	Mass Spectrometric Characterization of Circulating Covalent Protein Adducts Derived from Epoxide Metabolites of Carbamazepine in Patients. Chemical Research in Toxicology, 2017, 30, 1419-1435.	3.3	22
49	Dynamic and accurate assessment of acetaminophen-induced hepatotoxicity by integrated photoacoustic imaging and mechanistic biomarkers in vivo. Toxicology and Applied Pharmacology, 2017, 332, 64-74.	2.8	20
50	Real-time in vivo imaging reveals localised Nrf2 stress responses associated with direct and metabolism-dependent drug toxicity. Scientific Reports, 2017, 7, 16084.	3.3	11
51	Assessment of Antipiperacillin IgG Binding to Structurally Related Drug Protein Adducts. Chemical Research in Toxicology, 2017, 30, 2097-2099.	3.3	6
52	The Effect of Inhibitory Signals on the Priming of Drug Hapten–Specific T Cells That Express Distinct Vβ Receptors. Journal of Immunology, 2017, 199, 1223-1237.	0.8	41
53	From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicological Sciences, 2017, 155, 420-431.	3.1	31
54	Stem cell–derived models to improve mechanistic understanding and prediction of human drugâ€induced liver injury. Hepatology, 2017, 65, 710-721.	7.3	54

#	Article	IF	CITATIONS
55	New Approaches to Investigate Drug-Induced Hypersensitivity. Chemical Research in Toxicology, 2017, 30, 239-259.	3.3	18
56	A multicenter assessment of single-cell models aligned to standard measures of cell health for prediction of acute hepatotoxicity. Archives of Toxicology, 2017, 91, 1385-1400.	4.2	85
57	Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Scientific Reports, 2016, 6, 25187.	3.3	502
58	A novel high mobility group box 1 neutralizing chimeric antibody attenuates drugâ€induced liver injury and postinjury inflammation in mice. Hepatology, 2016, 64, 1699-1710.	7.3	96
59	Mass Spectrometric and Functional Aspects of Drug–Protein Conjugation. Chemical Research in Toxicology, 2016, 29, 1912-1935.	3.3	48
60	Detection of Primary T Cell Responses to Drugs and Chemicals in HLA-Typed Volunteers: Implications for the Prediction of Drug Immunogenicity. Toxicological Sciences, 2016, 154, 416-429.	3.1	40
61	Coâ€precipitation of DEAEâ€dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media and Molecular Imaging, 2016, 11, 362-370.	0.8	24
62	Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation. Hepatology, 2016, 64, 1743-1756.	7.3	100
63	Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptenic Structures in Patients. Chemical Research in Toxicology, 2016, 29, 1762-1772.	3.3	48
64	Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Archives of Toxicology, 2016, 90, 2979-3003.	4.2	50
65	Cytotoxicity evaluation using cryopreserved primary human hepatocytes in various culture formats. Toxicology Letters, 2016, 258, 207-215.	0.8	22
66	Detection of Drug-Responsive T-Lymphocytes in a Case of Fatal Antituberculosis Drug-Related Liver Injury. Chemical Research in Toxicology, 2016, 29, 1793-1795.	3.3	11
67	No Evidence for Drug-Specific Activation of Circulating T Cells from Patients with <i>HLA-DRB1</i> *07:01-Restricted Lapatinib-Induced Liver Injury. Chemical Research in Toxicology, 2016, 29, 2111-2113.	3.3	8
68	Design and Synthesis of Irreversible Analogues of Bardoxolone Methyl for the Identification of Pharmacologically Relevant Targets and Interaction Sites. Journal of Medicinal Chemistry, 2016, 59, 2396-2409.	6.4	37
69	Decreased Serum Thrombospondin-1 Levels in Pancreatic Cancer Patients Up to 24 Months Prior to Clinical Diagnosis: Association with Diabetes Mellitus. Clinical Cancer Research, 2016, 22, 1734-1743.	7.0	69
70	From mice to men: Murine models of colorectal cancer for use in translational research. Critical Reviews in Oncology/Hematology, 2016, 98, 94-105.	4.4	34
71	Circulating Kidney Injury Molecule 1 Predicts Prognosis and Poor Outcome in Patients With Acetaminophenâ€Induced Liver Injury. Hepatology, 2015, 62, 591-599.	7.3	24
72	Value of monitoring Nrf2 activity for the detection of chemical and oxidative stress. Biochemical Society Transactions, 2015, 43, 657-662.	3.4	40

#	Article	IF	Citations
73	Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy. Scientific Reports, 2015, 5, 13601.	3.3	51
74	Characterization of amoxicillin―and clavulanic acidâ€specific T cells in patients with amoxicillinâ€clavulanate–induced liver injury. Hepatology, 2015, 62, 887-899.	7.3	83
75	Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 221-241.	6.6	57
76	Concise Review: Workshop Review: Understanding and Assessing the Risks of Stem Cell-Based Therapies. Stem Cells Translational Medicine, 2015, 4, 389-400.	3.3	98
77	Auto-oxidation of Isoniazid Leads to Isonicotinic-Lysine Adducts on Human Serum Albumin. Chemical Research in Toxicology, 2015, 28, 51-58.	3.3	33
78	Characterization of Peroxidases Expressed in Human Antigen Presenting Cells and Analysis of the Covalent Binding of Nitroso Sulfamethoxazole to Myeloperoxidase. Chemical Research in Toxicology, 2015, 28, 144-154.	3.3	22
79	Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicology and Applied Pharmacology, 2015, 283, 168-177.	2.8	153
80	Promiscuous T-cell responses to drugs and drug-haptens. Journal of Allergy and Clinical Immunology, 2015, 136, 474-476.e8.	2.9	41
81	Where are we now with paracetamol?. BMJ, The, 2015, 351, h3705.	6.0	12
82	The utility of HepG2 cells to identify direct mitochondrial dysfunction in the absence of cell death. Toxicology in Vitro, 2015, 29, 732-740.	2.4	135
83	MicroRNA-122: A Novel Hepatocyte-Enriched in vitro Marker of Drug-Induced Cellular Toxicity. Toxicological Sciences, 2015, 144, 173-185.	3.1	33
84	Extracorporeal liver assist device to exchange albumin and remove endotoxin in acute liver failure: Results of a pivotal pre-clinical study. Journal of Hepatology, 2015, 63, 634-642.	3.7	56
85	Quantification of Drug-Induced Inhibition of Canalicular Cholyl-I-Lysyl-Fluorescein Excretion From Hepatocytes by High Content Cell Imaging. Toxicological Sciences, 2015, 148, 48-59.	3.1	32
86	Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney. Kidney International, 2015, 88, 1261-1273.	5.2	41
87	Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication. Toxicological Sciences, 2015, 147, 412-424.	3.1	73
88	Mechanism-Based Markers of Drug-Induced Liver Injury to Improve the Physiological Relevance and Predictivity of <i>In Vitro</i> Models. Applied in Vitro Toxicology, 2015, 1, 175-186.	1.1	5
89	New genetic findings lead the way to a better understanding of fundamental mechanisms of drug hypersensitivity. Journal of Allergy and Clinical Immunology, 2015, 136, 236-244.	2.9	80
90	Activation of Flucloxacillin-Specific CD8+ T-Cells With the Potential to Promote Hepatocyte Cytotoxicity in a Mouse Model. Toxicological Sciences, 2015, 146, 146-156.	3.1	27

#	Article	IF	CITATIONS
91	Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2. Free Radical Biology and Medicine, 2015, 78, 202-212.	2.9	161
92	Mass Spectrometric Characterization of Circulating Covalent Protein Adducts Derived from a Drug Acyl Glucuronide Metabolite: Multiple Albumin Adductions in Diclofenac Patients. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 387-402.	2.5	47
93	Chemical Tuning Enhances Both Potency Toward Nrf2 and In Vitro Therapeutic Index of Triterpenoids. Toxicological Sciences, 2014, 140, 462-469.	3.1	21
94	Negative Regulation by PD-L1 during Drug-Specific Priming of IL-22–Secreting T Cells and the Influence of PD-1 on Effector T Cell Function. Journal of Immunology, 2014, 192, 2611-2621.	0.8	50
95	Safety biomarkers for drug-induced liver injury – current status and future perspectives. Toxicology Research, 2014, 3, 75-85.	2.1	17
96	Negative regulation by Programmed Death Ligandâ€1 during drugâ€specific priming of Tâ€cells and the influence of Programmed Deathâ€1 on effector Tâ€cell function. Clinical and Translational Allergy, 2014, 4, O2.	3.2	0
97	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	4.2	1,089
98	The Generation, Detection, and Effects of Reactive Drug Metabolites. Medicinal Research Reviews, 2013, 33, 985-1080.	10.5	73
99	Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology, 2013, 57, 727-739.	7.3	212
100	The Development of In Vitro Culture Methods to Characterize Primary T-Cell Responses to Drugs. Toxicological Sciences, 2012, 127, 150-158.	3.1	60
101	Loss of Transcription Factor Nuclear Factor-Erythroid 2 (NF-E2) p45-related Factor-2 (Nrf2) Leads to Dysregulation of Immune Functions, Redox Homeostasis, and Intracellular Signaling in Dendritic Cells. Journal of Biological Chemistry, 2012, 287, 10556-10564.	3.4	63
102	Haloarene Derivatives of Carbamazepine with Reduced Bioactivation Liabilities: 2-Monohalo and 2,8-Dihalo Derivatives. Journal of Medicinal Chemistry, 2012, 55, 9773-9784.	6.4	18
103	In silico analysis of HLA associations with drug-induced liver injury: use of a HLA-genotyped DNA archive from healthy volunteers. Genome Medicine, 2012, 4, 51.	8.2	58
104	Convenient Syntheses of Benzo-Fluorinated Dibenz[<i>b</i> , <i>f</i>]azepines: Rearrangements of Isatins, Acridines, and Indoles. Organic Letters, 2011, 13, 5592-5595.	4.6	30
105	Managing the challenge of chemically reactive metabolites in drug development. Nature Reviews Drug Discovery, 2011, 10, 292-306.	46.4	382
106	HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nature Genetics, 2009, 41, 816-819.	21.4	950
107	Evidence for the Involvement of Carbon-centered Radicals in the Induction of Apoptotic Cell Death by Artemisinin Compounds. Journal of Biological Chemistry, 2007, 282, 9372-9382.	3.4	164
108	Generation and characterization of antigen-specific CD4+, CD8+, and CD4+CD8+ T-cell clones from patients with carbamazepine hypersensitivity. Journal of Allergy and Clinical Immunology, 2007, 119, 973-981.	2.9	104

#	Article	IF	CITATIONS
109	Drug-Specific T Cells in An HIV-Positive Patient with Nevirapine-Induced Hepatitis. Antiviral Therapy, 2006, 11, 393-395.	1.0	12
110	THE ROLE OF METABOLIC ACTIVATION IN DRUG-INDUCED HEPATOTOXICITY. Annual Review of Pharmacology and Toxicology, 2005, 45, 177-202.	9.4	422
111	Lipodystrophy in Patients with HIV-1 Infection: Effect of Stopping Protease Inhibitors on Tnf-α and Tnf-Receptor Levels, and on Metabolic Parameters. Antiviral Therapy, 2004, 9, 879-887.	1.0	6
112	METABOLISM OFFLUORINE-CONTAININGDRUGS. Annual Review of Pharmacology and Toxicology, 2001, 41, 443-470.	9.4	550
113	Optimisation of the allylsilane approach to C-10 deoxo carba analogues of dihydroartemisinin: synthesis and in vitro antimalarial activity of new, metabolically stable C-10 analogues. Journal of the Chemical Society, Perkin Transactions $1,2001, 2682-2689$.	1.3	26
114	Carbamazepine is not a substrate for P-glycoprotein. British Journal of Clinical Pharmacology, 2001, 51, 345-349.	2.4	123
115	Drug metabolism and drug toxicity. Inflammopharmacology, 2001, 9, 183-199.	3.9	3
116	Antigenicity and immunogenicity of sulphamethoxazole: demonstration of metabolism-dependent haptenation and T-cell proliferation in vivo. British Journal of Pharmacology, 2001, 133, 295-305.	5.4	115
117	Plasma Cysteine Deficiency and Decreased Reduction of Nitrososulfamethoxazole with HIV Infection. AIDS Research and Human Retroviruses, 2000, 16, 1929-1938.	1.1	62
118	Biomimetic Fe(II)-Mediated Degradation of Arteflene (Ro-42-1611). The First EPR Spin-Trapping Evidence for the Previously Postulated Secondary Carbon-Centered Cyclohexyl Radical. Journal of Organic Chemistry, 2000, 65, 1578-1582.	3.2	59
119	Immunological Principles of Adverse Drug Reactions. Drug Safety, 2000, 23, 483-507.	3.2	127
120	Cellular disposition of sulphamethoxazole and its metabolites: implications for hypersensitivity. British Journal of Pharmacology, 1999, 126, 1393-1407.	5.4	126
121	Assessment of the effect of malaria infection on hepatic clearance of dihydroartemisinin using rat liver perfusions and microsomes. British Journal of Pharmacology, 1998, 125, 159-167.	5.4	22
122	Synthesis of the 8-aminoquinoline antimalarial 5-fluoroprimaquine. Tetrahedron, 1998, 54, 4615-4622.	1.9	30
123	Safety assessment of peroxide antimalarials: clinical and chemical perspectives. British Journal of Clinical Pharmacology, 1998, 46, 521-529.	2.4	41
124	Role of Drug Disposition in Drug Hypersensitivity:Â A Chemical, Molecular, and Clinical Perspective. Chemical Research in Toxicology, 1998, 11, 969-988.	3.3	260
125	Idiosyncratic Drug Reactions. Clinical Pharmacokinetics, 1996, 31, 215-230.	3.5	81
126	Lack of association between schizophrenia and the CYPZD6 gene polymorphisms. American Journal of Medical Genetics Part A, 1996, 67, 236-237.	2.4	14

#	Article	IF	Citations
127	The effect of fluconazole and ketoconazole on the metabolism of sulphamethoxazole. British Journal of Clinical Pharmacology, 1996, 42, 347-353.	2.4	34
128	Clinical Pharmacokinetics of Tacrine. Clinical Pharmacokinetics, 1995, 28, 449-457.	3. 5	52
129	Effects of Fluorine Substitution on Drug Metabolism: Pharmacological and Toxicological Implications. Drug Metabolism Reviews, 1994, 26, 605-643.	3.6	125
130	The Effect of Fluorine Substitution on the Metabolism and Antimalarial Activity of Amodiaquine. Journal of Medicinal Chemistry, 1994, 37, 1362-1370.	6.4	78
131	The Role of Active Metabolites in Drug Toxicity. Drug Safety, 1994, 11, 114-144.	3.2	69
132	A Simple and Convenient Method for the Oxidation of Sulphides. Synthetic Communications, 1993, 23, 1507-1514.	2.1	34
133	Drug-Protein Conjugation and its Immunological Consequences. Drug Metabolism Reviews, 1990, 22, 87-144.	3.6	114
134	Effect of rifampicin and isoniazid on vitamin D metabolism. Clinical Pharmacology and Therapeutics, 1982, 32, 525-530.	4.7	93
135	Effect of isoniazid on vitamin D metabolism and hepatic monooxygenase activity. Clinical Pharmacology and Therapeutics, 1981, 30, 363-367.	4.7	66
136	Metabolic Mechanisms. , 0, , 57-75.		О