Elena Rosini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621580/publications.pdf

Version: 2024-02-01

257450 276875 1,893 61 24 41 citations h-index g-index papers 62 62 62 2228 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Multiâ€Enzymatic Cascade Reactions for the Synthesis of ⟨i⟩cis,cis⟨ i⟩â€Muconic Acid. Advanced Synthesis and Catalysis, 2022, 364, 114-123.	4.3	7
2	Reactive oxygen species as a doubleâ€edged sword: The role of oxidative enzymes in antitumor therapy. BioFactors, 2022, 48, 384-399.	5.4	15
3	Unveiling the Bio-corona Fingerprinting of Potential Anticancer Carbon Nanotubes Coupled with d-Amino Acid Oxidase. Molecular Biotechnology, 2022, 64, 1164-1176.	2.4	2
4	An antibody-based enzymatic therapy for cancer treatment: The selective localization of D-amino acid oxidase to EDA fibronectin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 36, 102424.	3.3	16
5	High-Throughput Strategy for Glycine Oxidase Biosensor Development Reveals Glycine Release from Cultured Cells. Analytical Chemistry, 2021, , .	6.5	1
6	PEG-DAAO conjugate: A promising tool for cancer therapy optimized by protein engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102122.	3.3	11
7	D-amino acids in foods. Applied Microbiology and Biotechnology, 2020, 104, 555-574.	3.6	76
8	Advances in Enzymatic Synthesis of D-Amino Acids. International Journal of Molecular Sciences, 2020, 21, 3206.	4.1	28
9	Expression and purification of the human tumor suppressor protein RNASET2 in CHO–S cells. Protein Expression and Purification, 2020, 174, 105675.	1.3	2
10	Antimicrobial Role of RNASET2 Protein During Innate Immune Response in the Medicinal Leech Hirudo verbana. Frontiers in Immunology, 2020, 11, 370.	4.8	16
11	Biosensors for D-Amino Acids: Detection Methods and Applications. International Journal of Molecular Sciences, 2020, 21, 4574.	4.1	26
12	Enzymatic transformation of aflatoxin B1 by Rh_DypB peroxidase and characterization of the reaction products. Chemosphere, 2020, 250, 126296.	8.2	41
13	A comprehensive practical laboratory course on protein engineering: Evolution of a glycine oxidase variant active on the herbicide glyphosate. Biochemistry and Molecular Biology Education, 2019, 47, 689-699.	1.2	1
14	The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson's disease patients. Scientific Reports, 2019, 9, 8898.	3.3	31
15	Antibacterial Properties of D-Amino Acid Oxidase: Impact on the Food Industry. Frontiers in Microbiology, 2019, 10, 2786.	3.5	7
16	Bacterial Nanocellulose and Its Surface Modification by Glycidyl Methacrylate and Ethylene Glycol Dimethacrylate. Incorporation of Vancomycin and Ciprofloxacin. Nanomaterials, 2019, 9, 1668.	4.1	22
17	Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Research, 2018, 27, 87-101.	2.4	24
18	Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. Applied Microbiology and Biotechnology, 2018, 102, 2425-2439.	3.6	26

#	Article	IF	CITATIONS
19	Engineering methionine \hat{I}^3 -lyase from Citrobacter freundii for anticancer activity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 1260-1270.	2.3	11
20	<i>In vitro</i> evolution of an <scp>I</scp> -amino acid deaminase active on <scp>I</scp> -1-naphthylalanine. Catalysis Science and Technology, 2018, 8, 5359-5367.	4.1	13
21	Characterization and use of a bacterial lignin peroxidase with an improved manganese-oxidative activity. Applied Microbiology and Biotechnology, 2018, 102, 10579-10588.	3.6	32
22	Binding Residence Time through Scaled Molecular Dynamics: A Prospective Application to hDAAO Inhibitors. Journal of Chemical Information and Modeling, 2018, 58, 2255-2265.	5.4	21
23	D-Amino Acid Oxidase-pLG72 Interaction and D-Serine Modulation. Frontiers in Molecular Biosciences, 2018, 5, 3.	3.5	11
24	A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. Biotechnology Reports (Amsterdam, Netherlands), 2017, 13, 49-57.	4.4	31
25	Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity. Scientific Reports, 2017, 7, 46288.	3.3	44
26	Deracemization and Stereoinversion of αâ€Amino Acids by <scp>l</scp> â€Amino Acid Deaminase. Advanced Synthesis and Catalysis, 2017, 359, 3773-3781.	4.3	27
27	A novel, simple screening method for investigating the properties of lignin oxidative activity. Enzyme and Microbial Technology, 2017, 96, 143-150.	3.2	16
28	Assays of D-Amino Acid Oxidase Activity. Frontiers in Molecular Biosciences, 2017, 4, 102.	3.5	30
29	Engineering substrate promiscuity in halophilic alcohol dehydrogenase (HvADH2) by in silico design. PLoS ONE, 2017, 12, e0187482.	2.5	11
30	Different recombinant forms of polyphenol oxidase A, a laccase from Marinomonas mediterranea. Protein Expression and Purification, 2016, 123, 60-69.	1.3	15
31	Demethylation of vanillic acid by recombinant LigM in a one-pot cofactor regeneration system. Catalysis Science and Technology, 2016, 6, 7729-7737.	4.1	17
32	Characterization and Investigation of Redox-Sensitive Liposomes for Gene Delivery. Methods in Molecular Biology, 2016, 1445, 217-233.	0.9	9
33	Cascade enzymatic cleavage of the \hat{l}^2 -O-4 linkage in a lignin model compound. Catalysis Science and Technology, 2016, 6, 2195-2205.	4.1	34
34	Comparison of different microbial laccases as tools for industrial uses. New Biotechnology, 2016, 33, 387-398.	4.4	55
35	One-pot conversion of cephalosporin C by using an optimized two-enzyme process. Catalysis Science and Technology, 2015, 5, 1854-1863.	4.1	8
36	Ligninâ€degrading enzymes. FEBS Journal, 2015, 282, 1190-1213.	4.7	347

#	Article	IF	CITATIONS
37	Unveiling the Atomic-Level Determinants of Acylase–Ligand Complexes: An Experimental and Computational Study. Journal of Chemical Information and Modeling, 2015, 55, 2227-2241.	5.4	1
38	Immobilization of <scp>I</scp> -aspartate oxidase from Sulfolobus tokodaii as a biocatalyst for resolution of aspartate solutions. Catalysis Science and Technology, 2015, 5, 1106-1114.	4.1	5
39	Novel biosensors based on optimized glycine oxidase. FEBS Journal, 2014, 281, 3460-3472.	4.7	16
40	Strategic manipulation of an industrial biocatalyst – evolution of a cephalosporinÂ <scp>C</scp> acylase. FEBS Journal, 2014, 281, 2443-2455.	4.7	21
41	Evolution of histamine oxidase activity for biotechnological applications. Applied Microbiology and Biotechnology, 2014, 98, 739-748.	3.6	10
42	Cephalosporin C acylase: dream and(/or) reality. Applied Microbiology and Biotechnology, 2013, 97, 2341-2355.	3.6	50
43	Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity. Biochemical Journal, 2013, 451, 217-226.	3.7	26
44	D-Amino Acid Oxidase Inhibitors as a Novel Class of Drugs for Schizophrenia Therapy. Current Pharmaceutical Design, 2013, 19, 2499-2511.	1.9	84
45	Expression of rat diamine oxidase in Escherichia coli. Journal of Molecular Catalysis B: Enzymatic, 2012, 82, 115-120.	1.8	5
46	Biosensors for d-Amino Acid Detection. Methods in Molecular Biology, 2012, 794, 313-324.	0.9	11
47	On the substrate preference of glutaryl acylases. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 52-58.	1.8	11
48	Analyzing the d-amino acid content in biological samples by engineered enzymes. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3235-3239.	2.3	10
49	On the reaction of dâ€amino acid oxidase with dioxygen: O ₂ diffusion pathways and enhancement of reactivity. FEBS Journal, 2011, 278, 482-492.	4.7	16
50	CASCAT: The Power of The Combined Protein Engineering Approach: Evolution of A Glycine Oxidase for A Novel Mechanism of Glyphosate Tolerancea T. Journal of Biotechnology, 2010, 150, 122-123.	3.8	0
51	O2 Reactivity of Flavoproteins. Journal of Biological Chemistry, 2010, 285, 24439-24446.	3.4	52
52	Glyphosate Resistance by Engineering the Flavoenzyme Glycine Oxidase. Journal of Biological Chemistry, 2009, 284, 36415-36423.	3.4	70
53	Optimization of <scp>d</scp> â€amino acid oxidase for low substrate concentrations – towards a cancer enzyme therapy. FEBS Journal, 2009, 276, 4921-4932.	4.7	32
54	Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Applied Microbiology and Biotechnology, 2008, 78, 1-16.	3.6	131

ELENA ROSINI

#	Article	IF	CITATION
55	Activity of yeast d-amino acid oxidase on aromatic unnatural amino acids. Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 93-98.	1.8	10
56	A biosensor for all d-amino acids using evolved d-amino acid oxidase. Journal of Biotechnology, 2008, 135, 377-384.	3.8	45
57	Glycine oxidase from Bacillus subtilis: Role of Histidine 244 and Methionine 261. Biochimie, 2007, 89, 1372-1380.	2.6	8
58	Multistep enzyme catalysed deracemisation of 2-naphthyl alanine. Biocatalysis and Biotransformation, 2006, 24, 409-413.	2.0	33
59	Enzymatic Conversion of Unnatural Amino Acids by YeastD-Amino Acid Oxidase. Advanced Synthesis and Catalysis, 2006, 348, 2183-2190.	4.3	59
60	Evolution of an acylase active on cephalosporin C. Protein Science, 2005, 14, 3064-3076.	7.6	69
61	Modulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acids by directed evolution. Protein Engineering, Design and Selection, 2004, 17, 517-525.	2.1	34