
Nagahiro Minato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury. Journal of Clinical Investigation, 2022, 132, .	8.2	36
2	A novel nuclear localization region in SIPA1 determines protein nuclear distribution and epirubicin-sensitivity of breast cancer cells. International Journal of Biological Macromolecules, 2021, 180, 718-728.	7.5	5
3	Selective expression of claudin-5 in thymic endothelial cells regulates the blood–thymus barrier and T-cell export. International Immunology, 2021, 33, 171-182.	4.0	13
4	Bone Marrow Endothelial Cells Take Up Blood-Borne Immune Complexes via Fcγ Receptor IIb2 in an Erythropoietin-Dependent Manner. Journal of Immunology, 2020, 205, 2008-2015.	0.8	2
5	SIPA1 enhances SMAD2/3 expression to maintain stem cell features in breast cancer cells. Stem Cell Research, 2020, 49, 102099.	0.7	12
6	Toward a new stage of PD-1 blockade cancer immunotherapy. International Journal of Clinical Oncology, 2020, 25, 787-789.	2.2	3
7	Physiology and pathology of T-cell aging. International Immunology, 2020, 32, 223-231.	4.0	68
8	Analytical performance of a new automated chemiluminescent magnetic immunoassays for soluble PD-1, PD-L1, and CTLA-4 in human plasma. Scientific Reports, 2019, 9, 10144.	3.3	29
9	Innate CD8αα+ cells promote ILC1-like intraepithelial lymphocyte homeostasis and intestinal inflammation. PLoS ONE, 2019, 14, e0215883.	2.5	4
10	Thymic Development of a Unique Bone Marrow–Resident Innate-like T Cell Subset with a Potent Innate Immune Function. Journal of Immunology, 2019, 203, 167-177.	0.8	7
11	Rap1 signal modulators control the maintenance of hematopoietic progenitors in bone marrow and adult longâ€ŧerm hematopoiesis. Cancer Science, 2019, 110, 1317-1330.	3.9	8
12	An improved clonogenic culture method for thymic epithelial cells. Journal of Immunological Methods, 2019, 467, 29-36.	1.4	2
13	Hassall's corpuscles with cellular-senescence features maintain IFNα production through neutrophils and pDC activation in the thymus. International Immunology, 2019, 31, 127-139.	4.0	26
14	Sipa1 deficiency unleashes a host-immune mechanism eradicating chronic myelogenous leukemia-initiating cells. Nature Communications, 2018, 9, 914.	12.8	7
15	Frontline Science: IL-18 primes murine NK cells for proliferation by promoting protein synthesis, survival, and autophagy. Journal of Leukocyte Biology, 2018, 104, 253-264.	3.3	31
16	Expansion of human γδT cells for adoptive immunotherapy using a bisphosphonate prodrug. Cancer Science, 2018, 109, 587-599.	3.9	40
17	Combined effects of neoadjuvant letrozole and zoledronic acid on γΠT cells in postmenopausal women with early-stage breast cancer. Breast, 2018, 38, 114-119.	2.2	5
18	The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflammation and Regeneration, 2018, 38, 24.	3.7	82

NAGAHIRO MINATO

#	Article	IF	CITATIONS
19	Microbiota — an amplifier of autoimmunity. Current Opinion in Immunology, 2018, 55, 15-21.	5.5	23
20	Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Frontiers in Immunology, 2018, 9, 1984.	4.8	38
21	Sipa1 deficiency–induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Advances, 2018, 2, 534-548.	5.2	32
22	CXCR3 ^{high} CD8 ⁺ T cells with naÃ⁻ve phenotype and high capacity for IFNâ€Ĵ³ production are generated during homeostatic T ell proliferation. European Journal of Immunology, 2018, 48, 1663-1678.	2.9	15
23	Physiologic Thymic Involution Underlies Age-Dependent Accumulation of Senescence-Associated CD4+ T Cells. Journal of Immunology, 2017, 199, 138-148.	0.8	37
24	Anti-Tumor Activity and Immunotherapeutic Potential of a Bisphosphonate Prodrug. Scientific Reports, 2017, 7, 5987.	3.3	49
25	Bone Marrow Endothelial Cells Induce Immature and Mature B Cell Egress in Response to Erythropoietin. Cell Structure and Function, 2017, 42, 149-157.	1.1	12
26	The potential role of Osteopontin in the maintenance of commensal bacteria homeostasis in the intestine. PLoS ONE, 2017, 12, e0173629.	2.5	16
27	Obesity accelerates T cell senescence in murine visceral adipose tissue. Journal of Clinical Investigation, 2016, 126, 4626-4639.	8.2	207
28	Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunological Reviews, 2016, 271, 38-55.	6.0	51
29	Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature, 2016, 534, 402-406.	27.8	536
30	Osteopontin in Spontaneous Germinal Centers Inhibits Apoptotic Cell Engulfment and Promotes Anti-Nuclear Antibody Production in Lupus-Prone Mice. Journal of Immunology, 2016, 197, 2177-2186.	0.8	27
31	Targeting Cancer Cells with a Bisphosphonate Prodrug. ChemMedChem, 2016, 11, 2656-2663.	3.2	35
32	Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight, 2016, 1, e87680.	5.0	96
33	A CD153+CD4+ T Follicular Cell Population with Cell-Senescence Features Plays a Crucial Role in Lupus Pathogenesis via Osteopontin Production. Journal of Immunology, 2015, 194, 5725-5735.	0.8	80
34	GABAB receptor promotes its own surface expression by recruiting a Rap1-dependent signaling cascade. Journal of Cell Science, 2015, 128, 2302-2313.	2.0	25
35	Adult Thymic Medullary Epithelium Is Maintained and Regenerated by Lineage-Restricted Cells Rather Than Bipotent Progenitors. Cell Reports, 2015, 13, 1432-1443.	6.4	69
36	Crucial role of the Rap G protein signal in Notch activation and leukemogenicity of T-cell acute lymphoblastic leukemia. Scientific Reports, 2015, 5, 7978.	3.3	9

NAGAHIRO MINATO

#	Article	IF	CITATIONS
37	Modification of Gene Expression, Proliferation, and Function of OP9 Stroma Cells by Bcr-Abl-Expressing Leukemia Cells. PLoS ONE, 2015, 10, e0134026.	2.5	6
38	Enteroendocrine Cells Are Specifically Marked by Cell Surface Expression of Claudin-4 in Mouse Small Intestine. PLoS ONE, 2014, 9, e90638.	2.5	37
39	Î ³ δT Cells and Their Potential for Immunotherapy. International Journal of Biological Sciences, 2014, 10, 119-135.	6.4	122
40	Medullary Thymic Epithelial Stem Cells Maintain a Functional Thymus to Ensure Lifelong Central T Cell Tolerance. Immunity, 2014, 41, 753-761.	14.3	106
41	Rap G protein signal in normal and disordered lymphohematopoiesis. Experimental Cell Research, 2013, 319, 2323-2328.	2.6	24
42	Activation by zoledoronic acidÂand IL-18 of î³î′ÂTÂcells from early-stage breast cancer patients in the context of helper NK cells Journal of Clinical Oncology, 2012, 30, e21004-e21004.	1.6	0
43	Increased câ€Myc activity and DNA damage in hematopoietic progenitors precede myeloproliferative disease in Spaâ€1â€deficiency. Cancer Science, 2011, 102, 784-791.	3.9	8
44	SPAâ€1 controls the invasion and metastasis of human prostate cancer. Cancer Science, 2011, 102, 828-836.	3.9	34
45	Anti-Programmed Cell Death 1 Antibody Reduces CD4+PD-1+ T Cells and Relieves the Lupus-Like Nephritis of NZB/W F1 Mice. Journal of Immunology, 2010, 184, 2337-2347.	0.8	73
46	Rap Signaling in Normal Lymphocyte Development and Leukemia Genesis. Immune Network, 2009, 9, 35.	3.6	0
47	Involvement of Rap-1 activation and early termination of immune synapse in CTLA-4-mediated negative signal. Hematology, 2009, 14, 150-158.	1.5	10
48	PD-1 ⁺ memory phenotype CD4 ⁺ T cells expressing C/EBPα underlie T cell immunodepression in senescence and leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15807-15812.	7.1	127
49	Spa†(Sipa1) and Rap signaling in leukemia and cancer metastasis. Cancer Science, 2009, 100, 17-23.	3.9	29
50	Rap signaling is crucial for the competence of IL-7 response and the development of B-lineage cells. Blood, 2009, 114, 1768-1775.	1.4	8
51	Development of Notch-dependent T-cell leukemia by deregulated Rap1 signaling. Blood, 2008, 111, 2878-2886.	1.4	34
52	Essential role of Rap signal in pre-TCR–mediated β-selection checkpoint in αβ T-cell development. Blood, 2008, 112, 4565-4573.	1.4	14
53	Regulation of Immune Responses and Hematopoiesis by the Rap1 Signal. Advances in Immunology, 2007, 93, 229-264.	2.2	33
54	Rap1 Signal Controls B Cell Receptor Repertoire and Generation of Self-Reactive B1a Cells. Immunity, 2006, 24, 417-427.	14.3	57

NAGAHIRO MINATO

#	Article	IF	CITATIONS
55	Role of SPA-1 in Phenotypes of Chronic Myelogenous Leukemia Induced by BCR-ABL–Expressing Hematopoietic Progenitors in a Mouse Model. Cancer Research, 2006, 66, 9967-9976.	0.9	22
56	Bromodomain Protein Brd4 Binds to GTPase-Activating SPA-1, Modulating Its Activity and Subcellular Localization. Molecular and Cellular Biology, 2004, 24, 9059-9069.	2.3	65
57	Myeloid cells. International Journal of Biochemistry and Cell Biology, 2004, 36, 1374-1379.	2.8	56
58	Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice. Cancer Cell, 2003, 4, 55-65.	16.8	124
59	Activation of CEA-CAM-1-mediated cell adhesion via CD98: involvement of PKCδ. FEBS Letters, 2003, 552, 184-188.	2.8	8
60	Rap1 GTPase: Functions, Regulation, and Malignancy. Journal of Biochemistry, 2003, 134, 479-484.	1.7	158
61	Antigen-driven T cell anergy and defective memory T cell response via deregulated Rap1 activation in SPA-1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10919-10924.	7.1	42
62	Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12293-12297.	7.1	2,563
63	CD98 induces LFA-1-mediated cell adhesion in lymphoid cells via activation of Rap1. FEBS Letters, 2001, 489, 249-253.	2.8	58
64	Facilitation of β Selection and Modification of Positive Selection in the Thymus of Pd-1–Deficient Mice. Journal of Experimental Medicine, 2000, 191, 891-898.	8.5	177
65	Rap1 Is a Potent Activation Signal for Leukocyte Function-Associated Antigen 1 Distinct from Protein Kinase C and Phosphatidylinositol-3-OH Kinase. Molecular and Cellular Biology, 2000, 20, 1956-1969.	2.3	313
66	Rap1 GTPase-activating Protein SPA-1 Negatively Regulates Cell Adhesion. Journal of Biological Chemistry, 1999, 274, 18463-18469.	3.4	152
67	4F2 (CD98) Heavy Chain Is Associated Covalently with an Amino Acid Transporter and Controls Intracellular Trafficking and Membrane Topology of 4F2 Heterodimer. Journal of Biological Chemistry, 1999, 274, 3009-3016.	3.4	273
68	Development of Lupus-like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity, 1999, 11, 141-151.	14.3	2,336
69	Stabilization of iron regulatory protein 2, IRP2, by aluminum. FEBS Letters, 1999, 462, 216-220.	2.8	42
70	Human SPA-1 Gene Product Selectively Expressed in Lymphoid Tissues Is a Specific GTPase-activating Protein for Rap1 and Rap2. Journal of Biological Chemistry, 1997, 272, 28081-28088.	3.4	111
71	Mitogen-InducibleSIPA1Is Mapped to the Conserved Syntenic Groups of Chromosome 19 in Mouse and Chromosome 11q13.3 Centromeric toBCL1in Human. Genomics, 1997, 39, 66-73.	2.9	17
72	Involvement of 4F2 antigen expressed on the MHC-negative target cells in the recognition of murine CD3+ CD4â^' CD8â^' αβ (Vα4/Vβ2) T cells. International Immunology, 1994, 6, 1323-1331.	4.0	7

#	Article	IF	CITATIONS
73	Pulmonary Hypertension in Systemic Lupus Erythematosus: A Report of an Autopsied Case Internal Medicine, 1994, 33, 540-542.	0.7	6
74	Adult Still's Disease with Sjoegren's Syndrome Successfully Treated with Intravenous Pulse Methylprednisolone and Oral Cyclophosphamide Internal Medicine, 1993, 32, 730-732.	0.7	10