Enrico Velardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1620701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528, 560-564.	27.8	818
2	Interleukin-22 Protects Intestinal Stem Cells from Immune-Mediated Tissue Damage and Regulates Sensitivity to Graft versus Host Disease. Immunity, 2012, 37, 339-350.	14.3	509
3	Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 2016, 8, 339ra71.	12.4	404
4	Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood, 2006, 107, 2846-2854.	1.4	183
5	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	30.7	179
6	Nrf2 regulates haematopoietic stem cell function. Nature Cell Biology, 2013, 15, 309-316.	10.3	173
7	Thymus: the next (re)generation. Immunological Reviews, 2016, 271, 56-71.	6.0	140
8	Glucocorticoid-induced leucine zipper (GILZ)/NF-ÂB interaction: role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids Research, 2006, 35, 517-528.	14.5	126
9	RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Science Translational Medicine, 2017, 9, .	12.4	114
10	T cell regeneration after immunological injury. Nature Reviews Immunology, 2021, 21, 277-291.	22.7	99
11	Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. Journal of Experimental Medicine, 2014, 211, 2341-2349.	8.5	95
12	Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Science Immunology, 2018, 3, .	11.9	93
13	Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation: Time To T Up the Thymus. Journal of Immunology, 2017, 198, 40-46.	0.8	87
14	Nutritional Support from the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Cell Host and Microbe, 2018, 23, 447-457.e4.	11.0	86
15	Silymarin suppress CD4+ T cell activation and proliferation: Effects on NF-κB activity and IL-2 production. Pharmacological Research, 2010, 61, 405-409.	7.1	77
16	Long Glucocorticoid-induced Leucine Zipper (L-GILZ) Protein Interacts with Ras Protein Pathway and Contributes to Spermatogenesis Control*. Journal of Biological Chemistry, 2012, 287, 1242-1251.	3.4	77
17	Immune reconstitution following stem cell transplantation. Hematology American Society of Hematology Education Program, 2015, 2015, 215-219.	2.5	71
18	Glucocorticoid-induced Leucine Zipper (GILZ) and Long GILZ Inhibit Myogenic Differentiation and Mediate Anti-myogenic Effects of Glucocorticoids. Journal of Biological Chemistry, 2010, 285, 10385-10396.	3.4	61

ENRICO VELARDI

#	Article	IF	CITATIONS
19	Peroxisome Proliferator-Activated Receptor-α Contributes to the Anti-Inflammatory Activity of Glucocorticoids. Molecular Pharmacology, 2008, 73, 323-337.	2.3	59
20	Glucocorticoid-Induced Leucine Zipper (GILZ) Over-Expression in T Lymphocytes Inhibits Inflammation and Tissue Damage in Spinal Cord Injury. Neurotherapeutics, 2012, 9, 210-225.	4.4	55
21	Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood, 2017, 130, 933-942.	1.4	55
22	Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats. Brain Research, 2012, 1477, 45-58.	2.2	52
23	Clinical strategies to enhance thymic recovery after allogeneic hematopoietic stem cell transplantation. Immunology Letters, 2013, 155, 31-35.	2.5	44
24	Palmitoylethanolamide Reduces Early Renal Dysfunction and Injury Caused by Experimental Ischemia and Reperfusion in Mice. Shock, 2012, 38, 356-366.	2.1	40
25	Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury. Nature Medicine, 2018, 24, 239-246.	30.7	34
26	Genomic and non-genomic effects of different glucocorticoids on mouse thymocyte apoptosis. European Journal of Pharmacology, 2006, 529, 63-70.	3.5	30
27	Clonal B cells in Waldenström's macroglobulinemia exhibit functional features of chronic active B-cell receptor signaling. Leukemia, 2016, 30, 1116-1125.	7.2	30
28	Nrf2 regulates CD4+ T cell–induced acute graft-versus-host disease in mice. Blood, 2018, 132, 2763-2774.	1.4	26
29	Sex steroid ablation: an immunoregenerative strategy for immunocompromised patients. Bone Marrow Transplantation, 2015, 50, S77-S81.	2.4	25
30	WNT Signaling Suppression in the Senescent Human Thymus. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 273-281.	3.6	23
31	Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathologica, 2021, 142, 537-564.	7.7	21
32	Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity. Journal of Clinical Investigation, 2013, 123, 2654-2662.	8.2	21
33	Glucocorticoid-induced activation of caspase-8 protects the glucocorticoid-induced protein Gilz from proteasomal degradation and induces its binding to SUMO-1 in murine thymocytes. Cell Death and Differentiation, 2011, 18, 183-190.	11.2	17
34	The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Seminars in Immunopathology, 2021, 43, 101-117.	6.1	14
35	Involvement of cPLA2 Inhibition in Dexamethasone-Induced Thymocyte Apoptosis. International Journal of Immunopathology and Pharmacology, 2008, 21, 539-551.	2.1	11
36	Thymic Function and T-Cell Receptor Repertoire Diversity: Implications for Patient Response to Checkpoint Blockade Immunotherapy. Frontiers in Immunology, 2021, 12, 752042.	4.8	11

ENRICO VELARDI

#	Article	IF	CITATIONS
37	RIG-I-Induced Type I IFNs Promote Regeneration of the Intestinal Stem Cell Compartment during Acute Tissue Damage. Blood, 2015, 126, 3072-3072.	1.4	2
38	Signaling Crosstalks Drive Generation and Regeneration of the Thymus. Frontiers in Immunology, 2022, 13, .	4.8	2
39	Fusing Evidences from Intracranial Pressure Data using Dempster-Shafer Theory. , 2007, , .		1
40	IL-22 Administration Protects Intestinal Stem Cells from Gvhd. Biology of Blood and Marrow Transplantation, 2014, 20, S53-S54.	2.0	1
41	IL-22 Directly Regulates Intestinal Stem Cells, Protecting Epithelium from GvHD and Reducing GvHD Mortality. Biology of Blood and Marrow Transplantation, 2015, 21, S58-S59.	2.0	1
42	Sex Steroid Blockade Enhances Thymopoiesis By Modulating Notch Signaling. Blood, 2013, 122, 291-291.	1.4	1
43	Murine Donor 1928z CAR T Cells Exert Potent Graft-Versus-Lymphoma Activity without Graft-Versus-Host-Disease. Blood, 2016, 128, 653-653.	1.4	1
44	CD19-Targeted Donor T Cells Exert Potent Graft Versus Lymphoma Activity and Attenuated Gvhd. Blood, 2012, 120, 451-451.	1.4	1
45	IL-22 Administration Decreases Intestinal Gvhd Pathology, Increases Intestinal Stem Cell Recovery, and Enhances Immune Reconstitution Following Allogeneic Hematopoietic Transplantation. Blood, 2013, 122, 290-290.	1.4	1
46	IL-22 Is an Intestinal Stem Cell Growth Factor, and IL-22 Administration in Vivo Reduces Morbidity and Mortality in Murine GvHD. Blood, 2014, 124, 651-651.	1.4	1
47	High-Depth, Targeted, Next Generation Sequencing Identifies Novel Genetic Alterations in Cutaneous T-Cell Lymphoma. Blood, 2015, 126, 1485-1485.	1.4	1
48	The Damage Sensory Molecule TRPA1 Positively Regulates Endogenous Thymic Regeneration after Damage. Blood, 2017, 130, 67-67.	1.4	1
49	Interleukin-7 as a Candidate Agent for Mitigating Radiation-Induced Hematologic Injury. International Journal of Radiation Oncology Biology Physics, 2013, 87, S168.	0.8	0
50	The Damage Sensory Molecule TRPA1 Positively Regulates Endogenous Thymic Regeneration after Damage. Biology of Blood and Marrow Transplantation, 2018, 24, S427.	2.0	0
51	Nrf2 is a Critical Mediator of CD4 T Cell-Induced Acute Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2018, 24, S175-S176.	2.0	0
52	Nutritional Support From the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Biology of Blood and Marrow Transplantation, 2018, 24, S75.	2.0	0
53	Suppression of Luteinizing Hormone Enhances HSC Recovery after Hematopoietic Injuries. Biology of Blood and Marrow Transplantation, 2018, 24, S108-S109.	2.0	0
54	Intrathymic Innate Lymphoid Cells: Long-Lived Mediators Of Immune Regeneration. Blood, 2013, 122, 289-289.	1.4	0

ENRICO VELARDI

#	Article	IF	CITATIONS
55	Endothelial Cells Promote Endogenous Thymic Regeneration after Injury Via BMP4 Signaling. Blood, 2014, 124, 2429-2429.	1.4	0
56	Production of BMP4 By Endothelial Cells Is Crucial for Endogenous Thymic Regeneration. Blood, 2015, 126, 637-637.	1.4	0
57	Suppression of Luteinizing Hormone Enhances HSC Recovery after Hematopoietic Injuries. Blood, 2016, 128, 370-370.	1.4	0
58	Mechanisms Governing Endogenous Thymic Regeneration. Blood, 2017, 130, 66-66.	1.4	0