
Jesus Page

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1619924/publications.pdf Version: 2024-02-01

IFSUS PACE

#	Article	IF	CITATIONS
1	Strategies for meiotic sex chromosome dynamics and telomeric elongation in Marsupials. PLoS Genetics, 2022, 18, e1010040.	3.5	9
2	Haspin participates in AURKB recruitment to centromeres and contributes to chromosome congression in male mouse meiosis. Journal of Cell Science, 2022, 135, .	2.0	2
3	Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: turning an X into a Y chromosome?. Chromosoma, 2021, 130, 113-131.	2.2	8
4	Meiotic Behavior of Achiasmate Sex Chromosomes in the African Pygmy Mouse Mus mattheyi Offers New Insights into the Evolution of Sex Chromosome Pairing and Segregation in Mammals. Genes, 2021, 12, 1434.	2.4	9
5	Epigenetic Dysregulation of Mammalian Male Meiosis Caused by Interference of Recombination and Synapsis. Cells, 2021, 10, 2311.	4.1	6
6	X Chromosome Inactivation during Grasshopper Spermatogenesis. Genes, 2021, 12, 1844.	2.4	4
7	Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genetics, 2020, 16, e1008959.	3.5	13
8	Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis. PLoS Genetics, 2019, 15, e1007439.	3.5	59
9	Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics. Chromosoma, 2019, 128, 149-163.	2.2	16
10	Hexavalents in spermatocytes of Robertsonian heterozygotes between Mus m. domesticus 2n=26 from the Vulcano and Lipari Islands (Aeolian Archipelago, Italy). European Journal of Histochemistry, 2018, 62, 2894.	1.5	5
11	Transcription reactivation during the first meiotic prophase in bugs is not dependent on synapsis. Chromosoma, 2017, 126, 179-194.	2.2	9
12	Aneuploidy in spermatids of Robertsonian (Rb) chromosome heterozygous mice. Chromosome Research, 2014, 22, 545-557.	2.2	8
13	The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma, 2014, 123, 529-544.	2.2	90
14	Bivalent Associations in Mus domesticus \$\$2n=40\$\$ 2 n = 40 Spermatocytes. Are They Random?. Bulletin of Mathematical Biology, 2014, 76, 1941-1952.	1.9	6
15	Robertsonian chromosomes and the nuclear architecture of mouse meiotic prophase spermatocytes. Biological Research, 2014, 47, 16.	3.4	35
16	Chromatin Organization and Remodeling of Interstitial Telomeric Sites During Meiosis in the Mongolian Gerbil (Meriones unguiculatus). Genetics, 2014, 197, 1137-1151.	2.9	8
17	Dynamics of cohesin subunits in grasshopper meiotic divisions. Chromosoma, 2013, 122, 77-91.	2.2	6
18	A synaptonemal complex-derived mechanism for meiotic segregation precedes the evolutionary loss of homology between sex chromosomes in arvicolid mammals. Chromosoma, 2012, 121, 433-446.	2.2	21

Jesus Page

#	Article	IF	CITATIONS
19	Distribution of repetitive DNAs and the hybrid origin of the red vizcacha rat (Octodontidae). Genome, 2012, 55, 105-117.	2.0	18
20	Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis?. Chromosoma, 2012, 121, 307-326.	2.2	87
21	The frequency of heterologous synapsis increases with aging in Robertsonian heterozygous male mice. Chromosome Research, 2012, 20, 269-278.	2.2	8
22	Model of chromosome associations in Mus domesticus spermatocytes. Biological Research, 2010, 43, .	3.4	25
23	Incomplete Synapsis and Chiasma Localization: The Chicken or the Egg?. Cytogenetic and Genome Research, 2010, 128, 139-151.	1.1	7
24	Marsupial Sex Chromosome Behaviour During Male Meiosis. , 2010, , 187-206.		8
25	Model of chromosome associations in Mus domesticus spermatocytes. Biological Research, 2010, 43, 275-85.	3.4	21
26	A High Incidence of Meiotic Silencing of Unsynapsed Chromatin Is Not Associated with Substantial Pachytene Loss in Heterozygous Male Mice Carrying Multiple Simple Robertsonian Translocations. PLoS Genetics, 2009, 5, e1000625.	3.5	90
27	Cohesin axis maturation and presence of RAD51 during first meiotic prophase in a true bug. Chromosoma, 2009, 118, 575-589.	2.2	10
28	Inverted Meiosis: The True Bugs as a Model to Study. Genome Dynamics, 2008, 5, 137-156.	2.4	52
29	Sequential Loading of Cohesin Subunits during the First Meiotic Prophase of Grasshoppers. PLoS Genetics, 2007, 3, e28.	3.5	23
30	Meiotic Pairing and Segregation of Achiasmate Sex Chromosomes in Eutherian Mammals: The Role of SYCP3 Protein. PLoS Genetics, 2007, 3, e198.	3.5	73
31	Sex chromosomes, synapsis, and cohesins: a complex affair. Chromosoma, 2006, 115, 250-259.	2.2	42
32	A Perikinetochoric Ring Defined by MCAK and Aurora-B as a Novel Centromere Domain. PLoS Genetics, 2006, 2, e84.	3.5	26
33	Involvement of Synaptonemal Complex Proteins in Sex Chromosome Segregation during Marsupial Male Meiosis. PLoS Genetics, 2006, 2, e136.	3.5	49
34	The Program of Sex Chromosome Pairing in Meiosis Is Highly Conserved Across Marsupial Species. Genetics, 2005, 170, 793-799.	2.9	40
35	DNA double-strand breaks and homology search: inferences from a species with incomplete pairing and synapsis. Journal of Cell Science, 2005, 118, 2957-2963.	2.0	31
36	Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genetics, 2005, preprint, e198.	3.5	0

Jesus Page

#	Article	IF	CITATIONS
37	Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. Journal of Cell Science, 2004, 117, 1221-1234.	2.0	149
38	X and B chromosomes display similar meiotic characteristics in male grasshoppers. Cytogenetic and Genome Research, 2004, 106, 302-308.	1.1	19
39	DNA doubleâ€strand breaks, recombination and synapsis: the timing of meiosis differs in grasshoppers and flies. EMBO Reports, 2004, 5, 385-391.	4.5	39
40	Number and Nuclear Localisation of Nucleoli in Mammalian Spermatocytes. Genetica, 2004, 121, 219-228.	1.1	23
41	Dynamic relocation of telomere complexes in mouse meiotic chromosomes. Chromosome Research, 2003, 11, 797-807.	2.2	17
42	Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. Journal of Cell Science, 2003, 116, 961-974.	2.0	74
43	The pairing of X and Y chromosomes during meiotic prophase in the marsupial species <i>Thylamys elegans</i> is maintained by a dense plate developed from their axial elements. Journal of Cell Science, 2003, 116, 551-560.	2.0	79
44	Expression and behaviour of CENP-E at kinetochores during mouse spermatogenesis. Chromosoma, 2002, 111, 53-61.	2.2	33
45	Robertsonian chromosome polymorphism of Akodon molinae (Rodentia: Sigmodontinae): analysis of trivalents in meiotic prophase. Revista Chilena De Historia Natural, 2001, 74, 107.	1.2	9
46	Meiosis in holocentric chromosomes: orientation and segregation of an autosome and sex chromosomes in Triatoma infestans (Heteroptera). Chromosome Research, 2000, 8, 17-25.	2.2	38
47	Meiotic sister chromatid cohesion in holocentric sex chromosomes of three heteropteran species is maintained in absence of axial elements. Chromosoma, 2000, 109, 35-43.	2.2	31
48	Squash procedure for protein immunolocalization in meiotic cells. Chromosome Research, 1998, 6, 639-642.	2.2	123
49	Meiotic behaviour of holocentric chromosomes: orientation and segregation of autosomes in Triatoma infestans (Heteroptera). Chromosome Research, 1997, 5, 47-56.	2.2	63
50	The osmium tetroxide-p-phenylenediamine procedure reveals the chromatid cores and kinetochores of meiotic chromosomes by light and electron microscopy Journal of Histochemistry and Cytochemistry, 1996, 44, 1279-1288.	2.5	5