MarÃ-a-Isabel Ramos-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1619682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>Câ€diâ€GMP</scp> and biofilm are regulated in <i>Pseudomonas putida</i> by the <scp>CfcA</scp> / <scp>CfcR</scp> twoâ€component system in response to salts. Environmental Microbiology, 2022, 24, 158-178.	3.8	8
2	Role of the Transcriptional Regulator ArgR in the Connection between Arginine Metabolism and c-di-GMP Signaling in Pseudomonas putida. Applied and Environmental Microbiology, 2022, 88, e0006422.	3.1	9
3	Genome-Wide Analysis of Targets for Post-Transcriptional Regulation by Rsm Proteins in Pseudomonas putida. Frontiers in Molecular Biosciences, 2021, 8, 624061.	3.5	8
4	Arginine as an environmental and metabolic cue for cyclic diguanylate signalling and biofilm formation in Pseudomonas putida. Scientific Reports, 2020, 10, 13623.	3.3	22
5	Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress. Journal of Bacteriology, 2019, 201, .	2.2	26
6	Removal of Hydrocarbons and Other Related Chemicals via the Rhizosphere of Plants. , 2019, , 157-169.		0
7	Genome-wide analysis of the FleQ direct regulon in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440. Scientific Reports, 2018, 8, 13145.	3.3	44
8	Removal of Hydrocarbons and Other Related Chemicals Via the Rhizosphere of Plants. , 2018, , 1-13.		1
9	The <i>Pseudomonas putida</i> CsrA/RsmA homologues negatively affect câ€diâ€GMP pools and biofilm formation through the GGDEF/EAL response regulator CfcR. Environmental Microbiology, 2017, 19, 3551-3566.	3.8	22
10	FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components. Research in Microbiology, 2017, 168, 36-45.	2.1	42
11	Genetic Dissection of the Regulatory Network Associated with High c-di-GMP Levels in Pseudomonas putida KT2440. Frontiers in Microbiology, 2016, 7, 1093.	3.5	37
12	Self-Regulation and Interplay of Rsm Family Proteins Modulate the Lifestyle of Pseudomonas putida. Applied and Environmental Microbiology, 2016, 82, 5673-5686.	3.1	28
13	Roles of Cyclic Di-GMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas putida Adhesins LapA and LapF. Journal of Bacteriology, 2014, 196, 1484-1495.	2.2	87
14	Interplay between extracellular matrix components of Pseudomonas putida biofilms. Research in Microbiology, 2013, 164, 382-389.	2.1	42
15	Study of the TmoS/TmoT twoâ€component system: towards the functional characterization of the family of TodS/TodT like systems. Microbial Biotechnology, 2012, 5, 489-500.	4.2	28
16	Identification of a Novel Calcium Binding Motif Based on the Detection of Sequence Insertions in the Animal Peroxidase Domain of Bacterial Proteins. PLoS ONE, 2012, 7, e40698.	2.5	15
17	Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in <i>Pseudomonas putida</i> : its role in the rhizosphere and an analysis of its target processes. Environmental Microbiology, 2011, 13, 1745-1766.	3.8	81
18	Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology, 2011, 29, 641-647.	9.3	74

#	Article	IF	CITATIONS
19	<i>Pseudomonas putida</i> KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environmental Microbiology Reports, 2010, 2, 381-388.	2.4	101
20	Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biology, 2007, 8, R179.	9.6	183
21	Temperature and pyoverdine-mediated iron acquisition control surface motility ofPseudomonas putida. Environmental Microbiology, 2007, 9, 1842-1850.	3.8	62
22	Characterization of the Pseudomonas putida Mobile Genetic Element ISPpu 10 : an Occupant of Repetitive Extragenic Palindromic Sequences. Journal of Bacteriology, 2006, 188, 37-44.	2.2	21
23	Role of iron and the TonB system in colonization of corn seeds and roots by Pseudomonas putida KT2440. Environmental Microbiology, 2005, 7, 443-449.	3.8	48
24	Analysis of Pseudomonas putida KT2440 Gene Expression in the Maize Rhizosphere: In Vitro Expression Technology Capture and Identification of Root-Activated Promoters. Journal of Bacteriology, 2005, 187, 4033-4041.	2.2	120
25	In Vivo Gene Expression: The IVET System. , 2004, , 351-366.		2
26	Pseudomonas putida mutants in the exbBexbDtonB gene cluster are hypersensitive to environmental and chemical stressors. Environmental Microbiology, 2004, 6, 605-610.	3.8	14
27	Genetic Engineering of a Highly Solvent-Tolerant Pseudomonas putida Strain for Biotransformation of Toluene to p- Hydroxybenzoate. Applied and Environmental Microbiology, 2003, 69, 5120-5127.	3.1	49
28	Cross-Regulation between a Novel Two-Component Signal Transduction System for Catabolism of Toluene in Pseudomonas mendocina and the TodST System from Pseudomonas putida. Journal of Bacteriology, 2002, 184, 7062-7067.	2.2	46
29	Mechanisms of Solvent Tolerance in Gram-Negative Bacteria. Annual Review of Microbiology, 2002, 56, 743-768.	7.3	705
30	Responses of Gram-negative bacteria to certain environmental stressors. Current Opinion in Microbiology, 2001, 4, 166-171.	5.1	192
31	A WbpL mutant of Pseudomonas putida DOT-T1E strain, which lacks the O-antigenic side chain of lipopolysaccharides, is tolerant to organic solvent shocks. Extremophiles, 2001, 5, 93-99.	2.3	11
32	Physiological Characterization of Pseudomonas putida DOT-T1E Tolerance to p -Hydroxybenzoate. Applied and Environmental Microbiology, 2001, 67, 4338-4341.	3.1	32
33	Involvement of the TonB System in Tolerance to Solvents and Drugs in Pseudomonas putida DOT-T1E. Journal of Bacteriology, 2001, 183, 5285-5292.	2.2	36
34	Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene, 1999, 232, 69-76.	2.2	123
35	Cloning, Sequencing, and Phenotypic Characterization of the <i>rpoS</i> Gene from <i>Pseudomonas putida</i> KT2440. Journal of Bacteriology, 1998, 180, 3421-3431.	2.2	101
36	The Pseudomonas putida peptidoglycan-associated outer membrane lipoprotein is involved in maintenance of the integrity of the cell cell envelope. Journal of Bacteriology, 1996, 178, 1699-1706.	2.2	76

#	Article	IF	CITATIONS
37	Fate of Pseudomonas putida after release into lake water mesocosms: Different survival mechanisms in response to environmental conditions. Microbial Ecology, 1994, 27, 99-122.	2.8	25
38	Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Applied and Environmental Microbiology, 1991, 57, 260-266.	3.1	100
39	Conjugational transfer of recombinant DNA in cultures and in soils: host range of Pseudomonas putida TOL plasmids. Applied and Environmental Microbiology, 1991, 57, 3020-3027.	3.1	100