
Joseph Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1619502/publications.pdf Version: 2024-02-01

LOSEDH LIN

#	Article	lF	CITATIONS
1	Hydropersulfides (RSSH) and Nitric Oxide (NO) Signaling: Possible Effects on S-Nitrosothiols (RS-NO). Antioxidants, 2022, 11, 169.	5.1	11
2	The reaction of hydropersulfides (RSSH) with S-nitrosothiols (RS-NO) and the biological/physiological implications. Free Radical Biology and Medicine, 2022, 188, 459-467.	2.9	5
3	Predicting the Possible Physiological/Biological Utility of the Hydropersulfide Functional Group Based on Its Chemistry: Similarities Between Hydropersulfides and Selenols. Antioxidants and Redox Signaling, 2020, 33, 1295-1307.	5.4	16
4	Deconstruction of plant biomass by a Cellulomonas strain isolated from an ultra-basic (lignin-stripping) spring. Archives of Microbiology, 2020, 202, 1077-1084.	2.2	2
5	The chemical biology of hydrogen sulfide and related hydropersulfides: interactions with biologically relevant metals and metalloproteins. Current Opinion in Chemical Biology, 2020, 55, 52-58.	6.1	25
6	The reactions of hydropersulfides (RSSH) with myoglobin. Archives of Biochemistry and Biophysics, 2020, 687, 108391.	3.0	18
7	Cysteine Trisulfide Protects <i>E.Âcoli</i> from Electrophile-Induced Death through the Generation of Cysteine Hydropersulfide. Chemical Research in Toxicology, 2020, 33, 678-686.	3.3	27
8	The reaction of hydrogen sulfide with disulfides: formation of a stable trisulfide and implications for biological systems. British Journal of Pharmacology, 2019, 176, 671-683.	5.4	73
9	The Uptake and Release of Polysulfur Cysteine Species by Cells: Physiological and Toxicological Implications. Chemical Research in Toxicology, 2019, 32, 447-455.	3.3	28
10	Chronic exposure of the RAW246.7 macrophage cell line to H2O2 leads to increased catalase expression. Free Radical Biology and Medicine, 2018, 126, 67-72.	2.9	4
11	Biological hydropersulfides and related polysulfides – a new concept and perspective in redox biology. FEBS Letters, 2018, 592, 2140-2152.	2.8	164
12	Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling, 2017, 27, 622-633.	5.4	51
13	The chemical biology of protein hydropersulfides: Studies of a possible protective function of biological hydropersulfide generation. Free Radical Biology and Medicine, 2016, 97, 136-147.	2.9	94
14	The chemical biology of hydropersulfides (RSSH): Chemical stability, reactivity and redox roles. Archives of Biochemistry and Biophysics, 2015, 588, 15-24.	3.0	65
15	Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: Implications of their possible biological activity and utility. Free Radical Biology and Medicine, 2014, 77, 82-94.	2.9	340
16	The phosphatase CD148 promotes airway hyperresponsiveness through SRC family kinases. Journal of Clinical Investigation, 2013, 123, 2037-2048.	8.2	24
17	Stathmin Regulates Microtubule Dynamics and Microtubule Organizing Center Polarization in Activated T Cells. Journal of Immunology, 2012, 188, 5421-5427.	0.8	40
18	T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation. Frontiers in Genetics, 2012, 3, 5.	2.3	7

Joseph Lin

#	Article	IF	CITATIONS
19	The Polarity Protein Par1b/EMK/MARK2 Regulates T Cell Receptor-Induced Microtubule-Organizing Center Polarization. Journal of Immunology, 2009, 183, 1215-1221.	0.8	43
20	The Mitogen-Activated Protein Kinase Scaffold KSR1 Is Required for Recruitment of Extracellular Signal-Regulated Kinase to the Immunological Synapse. Molecular and Cellular Biology, 2009, 29, 1554-1564.	2.3	23
21	KSR1 Modulates the Sensitivity of Mitogen-Activated Protein Kinase Pathway Activation in T Cells without Altering Fundamental System Outputs. Molecular and Cellular Biology, 2009, 29, 2082-2091.	2.3	37
22	Structurally Distinct Phosphatases CD45 and CD148 Both Regulate B Cell and Macrophage Immunoreceptor Signaling. Immunity, 2008, 28, 183-196.	14.3	140
23	Getting Downstream without a Raft. Cell, 2005, 121, 815-816.	28.9	18
24	Regulated Expression of the Receptor-Like Tyrosine Phosphatase CD148 on Hemopoietic Cells. Journal of Immunology, 2004, 173, 2324-2330.	0.8	21
25	Linker for Activation of T Cells, ζ-Associated Protein-70, and Src Homology 2 Domain-Containing Leukocyte Protein-76 are Required for TCR-Induced Microtubule-Organizing Center Polarization. Journal of Immunology, 2003, 171, 860-866.	0.8	98
26	Synergistic Assembly of Linker for Activation of T Cells Signaling Protein Complexes in T Cell Plasma Membrane Domains. Journal of Biological Chemistry, 2003, 278, 20389-20394.	3.4	46
27	The tyrosine phosphatase CD148 is excluded from the immunologic synapse and down-regulates prolonged T cell signaling. Journal of Cell Biology, 2003, 162, 673-682.	5.2	83
28	T Cell Receptor-Independent Basal Signaling via Erk and Abl Kinases Suppresses RAG Gene Expression. PLoS Biology, 2003, 1, e53.	5.6	88
29	It's all Rel-ative: NF-κB and CD28 costimulation of T-cell activation. Trends in Immunology, 2002, 23, 413-420.	6.8	173
30	ldentification of the Minimal Tyrosine Residues Required for Linker for Activation of T Cell Function. Journal of Biological Chemistry, 2001, 276, 29588-29595.	3.4	158
31	T cell receptor signalling. Journal of Cell Science, 2001, 114, 243-244.	2.0	144
32	Signal transduction by the TCR for antigen. Current Opinion in Immunology, 2000, 12, 242-249.	5.5	456
33	Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Trends in Immunology, 2000, 21, 584-591.	7.5	115
34	Localization of LAT in Glycolipid-enriched Microdomains Is Required for T cell Activation. Journal of Biological Chemistry, 1999, 274, 28861-28864.	3.4	142