
Dioneia Araldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1618972/publications.pdf Version: 2024-02-01

Πιονεία Δραι σι

#	Article	IF	CITATIONS
1	Inflammation-induced decrease in voluntary wheel running in mice: A nonreflexive test for evaluating inflammatory pain and analgesia. Pain, 2012, 153, 876-884.	4.2	200
2	Repeated Mu-Opioid Exposure Induces a Novel Form of the Hyperalgesic Priming Model for Transition to Chronic Pain. Journal of Neuroscience, 2015, 35, 12502-12517.	3.6	68
3	Neuronal P2X3 receptor activation is essential to the hyperalgesia induced by prostaglandins and sympathomimetic amines released during inflammation. Neuropharmacology, 2013, 67, 252-258.	4.1	56
4	Inflammatory sensitization of nociceptors depends on activation of NMDA receptors in DRG satellite cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18363-18368.	7.1	53
5	Distinct Terminal and Cell Body Mechanisms in the Nociceptor Mediate Hyperalgesic Priming. Journal of Neuroscience, 2015, 35, 6107-6116.	3.6	50
6	Marked Sexual Dimorphism in the Role of the Ryanodine Receptor in a Model of Pain Chronification in the Rat. Scientific Reports, 2016, 6, 31221.	3.3	47
7	Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3603-3608.	7.1	45
8	On the mechanisms involved in antinociception induced by diphenyl diselenide. Environmental Toxicology and Pharmacology, 2005, 19, 283-289.	4.0	44
9	Antinociceptive properties of acetylenic thiophene and furan derivatives: Evidence for the mechanism of action. Life Sciences, 2005, 76, 2221-2234.	4.3	39
10	Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP ₃ Receptors in the Induction of Hyperalgesic Priming. Journal of Neuroscience, 2017, 37, 2032-2044.	3.6	39
11	Hyperalgesic priming (type II) induced by repeated opioid exposure: maintenance mechanisms. Pain, 2017, 158, 1204-1216.	4.2	39
12	Nanoassisted Laser Desorption-Ionization-MS Imaging of Tumors. Analytical Chemistry, 2012, 84, 6341-6345.	6.5	38
13	CD44 Signaling Mediates High Molecular Weight Hyaluronan-Induced Antihyperalgesia. Journal of Neuroscience, 2018, 38, 308-321.	3.6	38
14	Role of Nociceptor Toll-like Receptor 4 (TLR4) in Opioid-Induced Hyperalgesia and Hyperalgesic Priming. Journal of Neuroscience, 2019, 39, 6414-6424.	3.6	38
15	P2X3 and P2X2/3 receptors mediate mechanical hyperalgesia induced by bradykinin, but not by pro-inflammatory cytokines, PGE2 or dopamine. European Journal of Pharmacology, 2010, 649, 177-182.	3.5	34
16	Fentanyl Induces Rapid Onset Hyperalgesic Priming: Type I at Peripheral and Type II at Central Nociceptor Terminals. Journal of Neuroscience, 2018, 38, 2226-2245.	3.6	31
17	Gi-protein–coupled 5-HT1B/D receptor agonist sumatriptan induces type I hyperalgesic priming. Pain, 2016, 157, 1773-1782.	4.2	29
18	Adenosine-A1 receptor agonist induced hyperalgesic priming type II. Pain, 2016, 157, 698-709.	4.2	29

DIONEIA ARALDI

#	Article	IF	CITATIONS
19	Mu-opioid Receptor (MOR) Biased Agonists Induce Biphasic Dose-dependent Hyperalgesia and Analgesia, and Hyperalgesic Priming in the Rat. Neuroscience, 2018, 394, 60-71.	2.3	27
20	Extracellular matrix hyaluronan signals via its CD44 receptor in the increased responsiveness to mechanical stimulation. Neuroscience, 2016, 324, 390-398.	2.3	26
21	Marked sexual dimorphism in neuroendocrine mechanisms for the exacerbation of paclitaxel-induced painful peripheral neuropathy by stress. Pain, 2020, 161, 865-874.	4.2	26
22	Antihyperalgesic effect of CB1 receptor activation involves the modulation of P2X3 receptor in the primary afferent neuron. European Journal of Pharmacology, 2017, 798, 113-121.	3.5	24
23	Involvement of TACAN, a Mechanotransducing Ion Channel, in Inflammatory But Not Neuropathic Hyperalgesia in the Rat. Journal of Pain, 2021, 22, 498-508.	1.4	23
24	<i>In Vitro</i> Nociceptor Neuroplasticity Associated with <i>In Vivo</i> Opioid-Induced Hyperalgesia. Journal of Neuroscience, 2019, 39, 7061-7073.	3.6	22
25	Role of GPCR (mu-opioid)–receptor tyrosine kinase (epidermal growth factor) crosstalk in opioid-induced hyperalgesic priming (type II). Pain, 2018, 159, 864-875.	4.2	21
26	Peripheral Inflammatory Hyperalgesia Depends on P2X7 Receptors in Satellite Glial Cells. Frontiers in Physiology, 2020, 11, 473.	2.8	21
27	Acute Diphenyl Diselenide Treatment Reduces Hyperglycemia But Does Not Change Delta-Aminolevulinate Dehydratase Activity in Alloxan-Induced Diabetes in Rats. Biological and Pharmaceutical Bulletin, 2008, 31, 2200-2204.	1.4	20
28	Marked sexual dimorphism in 5-HT 1 receptors mediating pronociceptive effects of sumatriptan. Neuroscience, 2017, 344, 394-405.	2.3	18
29	Opioid-Induced Hyperalgesic Priming in Single Nociceptors. Journal of Neuroscience, 2021, 41, 31-46.	3.6	16
30	Systemic Morphine Produces Dose-dependent Nociceptor-mediated Biphasic Changes in Nociceptive Threshold and Neuroplasticity. Neuroscience, 2019, 398, 64-75.	2.3	14
31	Mechanisms Mediating High-Molecular-Weight Hyaluronan-Induced Antihyperalgesia. Journal of Neuroscience, 2020, 40, 6477-6488.	3.6	14
32	P2X3 receptors induced inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors. Pharmacology Biochemistry and Behavior, 2013, 112, 49-55.	2.9	12
33	Regulation of Expression of Hyperalgesic Priming by Estrogen Receptor α in the Rat. Journal of Pain, 2017, 18, 574-582.	1.4	11
34	Age-Dependent Sexual Dimorphism in Susceptibility to Develop Chronic Pain in the Rat. Neuroscience, 2018, 387, 170-177.	2.3	10
35	Sexual dimorphism in the contribution of neuroendocrine stress axes to oxaliplatin-induced painful peripheral neuropathy. Pain, 2021, 162, 907-918.	4.2	9
36	Sexually Dimorphic Role of Toll-like Receptor 4 (TLR4) in High Molecular Weight Hyaluronan (HMWH)-induced Anti-hyperalgesia. Journal of Pain, 2021, 22, 1273-1282.	1.4	7

DIONEIA ARALDI

#	Article	IF	CITATIONS
37	PI3Kγ/AKT Signaling in High Molecular Weight Hyaluronan (HMWH)-Induced Anti-Hyperalgesia and Reversal of Nociceptor Sensitization. Journal of Neuroscience, 2021, 41, 8414-8426.	3.6	5
38	Contribution of G-Protein α-Subunits to Analgesia, Hyperalgesia, and Hyperalgesic Priming Induced by Subanalgesic and Analgesic Doses of Fentanyl and Morphine. Journal of Neuroscience, 2022, 42, 1196-1210.	3.6	5
39	Janus kinase 2 activation participates in prostaglandin E2-induced hyperalgesia. Life Sciences, 2016, 166, 8-12.	4.3	4
40	Neuroendocrine Stress Axis-Dependence of Duloxetine Analgesia (Anti-Hyperalgesia) in Chemotherapy-Induced Peripheral Neuropathy. Journal of Neuroscience, 2022, 42, 405-415.	3.6	4
41	Depolarization induces nociceptor sensitization by CaV1.2-mediated PKA-II activation. Journal of Cell Biology, 2021, 220, .	5.2	2