Jon T Skare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1618730/publications.pdf

Version: 2024-02-01

394421 501196 1,431 29 19 28 h-index citations g-index papers 31 31 31 740 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Profiling of Temperature-Induced Changes in Borrelia burgdorferi Gene Expression by Using Whole Genome Arrays. Infection and Immunity, 2003, 71, 1689-1705.	2.2	263
2	The BosR regulatory protein of <i>Borrelia burgdorferi</i> interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Molecular Microbiology, 2009, 74, 1344-1355.	2.5	115
3	Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. PLoS Pathogens, 2016, 12, e1005404.	4.7	111
4	The Oms66 (p66) protein is a Borrelia burgdorferi porin. Infection and Immunity, 1997, 65, 3654-3661.	2.2	106
5	Bioluminescent imaging of <i>Borrelia burgdorferi in vivo</i> demonstrates that the fibronectinâ€binding protein BBK32 is required for optimal infectivity. Molecular Microbiology, 2011, 82, 99-113.	2.5	97
6	Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Molecular Microbiology, 2012, 86, 1116-1131.	2.5	75
7	Invasion of Eukaryotic Cells by <i>Borrelia burgdorferi</i> Requires β ₁ Integrins and Src Kinase Activity. Infection and Immunity, 2011, 79, 1338-1348.	2.2	61
8	A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi. Molecular Microbiology, 2004, 54, 1352-1363.	2.5	57
9	Characterization of a Conditional <i>bosR</i> Mutant in <i>Borrelia burgdorferi</i> Infection and Immunity, 2010, 78, 265-274.	2.2	56
10	Analysis of Mechanisms Associated with Loss of Infectivity of Clonal Populations of Borrelia burgdorferi B31MI. Infection and Immunity, 2001, 69, 3670-3677.	2.2	53
11	Lyme Disease Pathogenesis. Current Issues in Molecular Biology, 2022, 42, 473-518.	2.4	49
12	Biomechanics of Borrelia burgdorferi Vascular Interactions. Cell Reports, 2016, 16, 2593-2604.	6.4	48
13	Complement Evasion by Lyme Disease Spirochetes. Trends in Microbiology, 2020, 28, 889-899.	7.7	48
14	A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species. PLoS Pathogens, 2017, 13, e1006225.	4.7	36
15	Structural determination of the complement inhibitory domain of Borrelia burgdorferi BBK32 provides insight into classical pathway complement evasion by Lyme disease spirochetes. PLoS Pathogens, 2019, 15, e1007659.	4.7	33
16	Cloning and Molecular Characterization of Plasmid-Encoded Antigens of <i>Borrelia burgdorferi</i> Infection and Immunity, 1999, 67, 4407-4417.	2.2	32
17	Borrelia burgdorferi gene expression profiling with membrane-based arrays. Methods in Enzymology, 2002, 358, 165-177.	1.0	31
18	Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes tick vector. PLoS Pathogens, 2019, 15, e1007644.	4.7	25

#	Article	IF	CITATIONS
19	The Classical Complement Pathway Is Required to Control Borrelia burgdorferi Levels During Experimental Infection. Frontiers in Immunology, 2018, 9, 959.	4.8	22
20	The <scp>BBA</scp> 33 lipoprotein binds collagen and impacts <scp><i>B</i></scp> <i>orrelia burgdorferiorrelia burgdorferiorrelia burgdorferi</i>	2.5	21
21	Genetic Transformation of Borrelia burgdorferi. Current Protocols in Microbiology, 2011, 20, Unit 12C.4.	6.5	20
22	The BB0646 protein demonstrates lipase and haemolytic activity associated with <i>Borrelia burgdorferi</i> , the aetiological agent of Lyme disease. Molecular Microbiology, 2012, 83, 319-334.	2.5	16
23	BB0744 Affects Tissue Tropism and Spatial Distribution of Borrelia burgdorferi. Infection and Immunity, 2015, 83, 3693-3703.	2.2	13
24	The intergenic small non-coding RNA ittA is required for optimal infectivity and tissue tropism in Borrelia burgdorferi. PLoS Pathogens, 2020, 16, e1008423.	4.7	13
25	A Structural Basis for Inhibition of the Complement Initiator Protease C1r by Lyme Disease Spirochetes. Journal of Immunology, 2021, 207, 2856-2867.	0.8	11
26	Detection of Bioluminescent Borrelia burgdorferi from In Vitro Cultivation and During Murine Infection. Methods in Molecular Biology, 2018, 1690, 241-257.	0.9	7
27	Borrelia miyamotoi FbpA and FbpB Are Immunomodulatory Outer Surface Lipoproteins With Distinct Structures and Functions. Frontiers in Immunology, 2022, 13, .	4.8	7
28	Live Imaging. Current Issues in Molecular Biology, 2022, 42, 385-408.	2.4	3
29	Minimal Role for the Alternative Pathway in Complement Activation By HIT Immune Complexes. Blood, 2021, 138, 2076-2076.	1.4	0