Dario J Englot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1616245/publications.pdf

Version: 2024-02-01

44069 64796 7,073 140 48 79 citations h-index g-index papers 144 144 144 6757 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. Journal of Neurosurgery, 2011, 115, 1248-1255.	1.6	387
2	Epilepsy surgery trends in the United States, 1990–2008. Neurology, 2012, 78, 1200-1206.	1.1	233
3	Predictors of seizure freedom after resection of supratentorial low-grade gliomas. Journal of Neurosurgery, 2011, 115, 240-244.	1.6	215
4	Factors associated with seizure freedom in the surgical resection of glioneuronal tumors. Epilepsia, 2012, 53, 51-57.	5.1	210
5	Extent of Surgical Resection Predicts Seizure Freedom in Low-Grade Temporal Lobe Brain Tumors. Neurosurgery, 2012, 70, 921-928.	1.1	206
6	Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy. Neurosurgery, 2016, 79, 345-353.	1.1	200
7	Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain, 2015, 138, 2249-2262.	7.6	198
8	Early treatment suppresses the development of spikeâ€wave epilepsy in a rat model. Epilepsia, 2008, 49, 400-409.	5.1	185
9	Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Brain, 2010, 133, 3764-3777.	7.6	181
10	A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. Journal of Neurosurgery, 2012, 116, 1035-1041.	1.6	169
11	Rates and predictors of long-term seizure freedom after frontal lobe epilepsy surgery: a systematic review and meta-analysis. Journal of Neurosurgery, 2012, 116, 1042-1048.	1.6	163
12	Rates and predictors of seizure freedom in resective epilepsy surgery: an update. Neurosurgical Review, 2014, 37, 389-405.	2.4	158
13	Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. Epilepsia, 2016, 57, 1546-1557.	5.1	156
14	Epilepsy and brain tumors. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 267-285.	1.8	151
15	Predictors of seizure freedom in the surgical treatment of supratentorial cavernous malformations. Journal of Neurosurgery, 2011, 115, 1169-1174.	1.6	137
16	Remote Effects of Focal Hippocampal Seizures on the Rat Neocortex. Journal of Neuroscience, 2008, 28, 9066-9081.	3.6	133
17	Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: A multicenter study of 234 patients. Epilepsia, 2019, 60, 1171-1183.	5.1	132
18	Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia, 2015, 56, 949-958.	5.1	130

#	Article	IF	CITATIONS
19	Seizure outcomes after resective surgery for extra–temporal lobe epilepsy in pediatric patients. Journal of Neurosurgery: Pediatrics, 2013, 12, 126-133.	1.3	124
20	Vagus Nerve Stimulation for the Treatment of Epilepsy. Neurosurgery Clinics of North America, 2019, 30, 219-230.	1.7	117
21	An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: Analysis of multiple databases. Parkinsonism and Related Disorders, 2016, 33, 72-77.	2.2	116
22	Seizures in supratentorial meningioma: a systematic review and meta-analysis. Journal of Neurosurgery, 2016, 124, 1552-1561.	1.6	113
23	Cortical Deactivation Induced by Subcortical Network Dysfunction in Limbic Seizures. Journal of Neuroscience, 2009, 29, 13006-13018.	3.6	110
24	Decreased Subcortical Cholinergic Arousal in Focal Seizures. Neuron, 2015, 85, 561-572.	8.1	99
25	Consciousness and epilepsy: why are complex-partial seizures complex?. Progress in Brain Research, 2009, 177, 147-170.	1.4	98
26	LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology. Molecular and Cellular Neurosciences, 2009, 42, 448-457.	2.2	84
27	Efficacy of Vagus Nerve Stimulation for Epilepsy by Patient Age, Epilepsy Duration, and Seizure Type. Neurosurgery Clinics of North America, 2011, 22, 443-448.	1.7	81
28	Seizure Predictors and Control After Microsurgical Resection of Supratentorial Arteriovenous Malformations in 440 Patients. Neurosurgery, 2012, 71, 572-580.	1.1	81
29	A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy and Behavior, 2018, 80, 68-74.	1.7	80
30	Increased seizure severity and seizureâ€related death in mice lacking HCN1 channels. Epilepsia, 2010, 51, 1624-1627.	5.1	79
31	Seizure outcomes after temporal lobectomy in pediatric patients. Journal of Neurosurgery: Pediatrics, 2013, 12, 134-141.	1.3	76
32	Pain Outcomes Following Microvascular Decompression for Drug-Resistant Trigeminal Neuralgia: A Systematic Review and Meta-Analysis. Neurosurgery, 2020, 86, 182-190.	1.1	75
33	Factors Associated With Pre- and Postoperative Seizures in 1033 Patients Undergoing Supratentorial Meningioma Resection. Neurosurgery, 2017, 81, 297-306.	1.1	70
34	Increased nationwide use of stereoencephalography for intracranial epilepsy electroencephalography recordings. Journal of Clinical Neuroscience, 2018, 53, 132-134.	1.5	68
35	Corpus callosotomy versus vagus nerve stimulation for atonic seizures and drop attacks: A systematic review. Epilepsy and Behavior, 2015, 51, 13-17.	1.7	67
36	Rates and predictors of success and failure in repeat epilepsy surgery: A metaâ€analysis and systematic review. Epilepsia, 2017, 58, 2133-2142.	5.1	66

#	Article	IF	CITATIONS
37	Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data. Epilepsy and Behavior, 2017, 66, 4-9.	1.7	65
38	Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy and Behavior, 2012, 24, 314-318.	1.7	63
39	Brainstem arteriovenous malformations: anatomical subtypes, assessment of "occlusion in situ― technique, and microsurgical results. Journal of Neurosurgery, 2015, 122, 107-117.	1.6	62
40	Minimally invasive surgical approaches for temporal lobe epilepsy. Epilepsy and Behavior, 2015, 47, 24-33.	1.7	62
41	Magnetic resonance imaging connectivity for the prediction of seizure outcome in temporal lobe epilepsy. Epilepsia, 2017, 58, 1251-1260.	5.1	62
42	Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 925-932.	1.9	62
43	Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review. Neurosurgical Focus, 2018, 45, E14.	2.3	60
44	Seizure outcomes in nonresective epilepsy surgery: an update. Neurosurgical Review, 2017, 40, 181-194.	2.4	58
45	Relationship between hospital surgical volume, lobectomy rates, and adverse perioperative events at US epilepsy centers. Journal of Neurosurgery, 2013, 118, 169-174.	1.6	57
46	Advanced Technical Skills Are Required for Microsurgical Clipping of Posterior Communicating Artery Aneurysms in the Endovascular Era. Neurosurgery, 2012, 71, 285-295.	1.1	54
47	Epilepsy surgery failure in children: a quantitative and qualitative analysis. Journal of Neurosurgery: Pediatrics, 2014, 14, 386-395.	1.3	51
48	Impaired vigilance networks in temporal lobe epilepsy: Mechanisms and clinical implications. Epilepsia, 2020, 61, 189-202.	5.1	51
49	Efficacy of vagus nerve stimulation in posttraumatic versus nontraumatic epilepsy. Journal of Neurosurgery, 2012, 117, 970-977.	1.6	49
50	Factors Associated With Failed Focal Neocortical Epilepsy Surgery. Neurosurgery, 2014, 75, 648-656.	1.1	49
51	Relating structural and functional brainstem connectivity to disease measures in epilepsy. Neurology, 2018, 91, e67-e77.	1.1	48
52	Abnormal T ₂ -Weighted MRI Signal Surrounding Leads in a Subset of Deep Brain Stimulation Patients. Stereotactic and Functional Neurosurgery, 2011, 89, 311-317.	1.5	47
53	Comparison of seizure control outcomes and the safety of vagus nerve, thalamic deep brain, and responsive neurostimulation: evidence from randomized controlled trials. Neurosurgical Focus, 2012, 32, E14.	2.3	45
54	Seizureâ€onset regions demonstrate high inward directed connectivity during restingâ€state: An SEEG study in focal epilepsy. Epilepsia, 2020, 61, 2534-2544.	5.1	45

#	Article	IF	Citations
55	Characteristics and Treatment of Seizures in Patients with High-Grade Glioma: A Review. Neurosurgery Clinics of North America, 2012, 23, 227-235.	1.7	44
56	Timing of referral to evaluate for epilepsy surgery: Expert Consensus Recommendations from the Surgical Therapies Commission of the International League Against Epilepsy. Epilepsia, 2022, 63, 2491-2506.	5.1	43
57	Deep brain stimulation in pediatric dystonia: a systematic review. Neurosurgical Review, 2020, 43, 873-880.	2.4	41
58	Frontal operculum gliomas: language outcome following resection. Journal of Neurosurgery, 2015, 122, 725-734.	1.6	40
59	Rate and complications of adult epilepsy surgery in North America: Analysis of multiple databases. Epilepsy Research, 2016, 124, 55-62.	1.6	39
60	Thalamic arousal network disturbances in temporal lobe epilepsy and improvement after surgery. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1109-1116.	1.9	38
61	Trends in surgical treatment for trigeminal neuralgia in the United States of America from 1988 to 2008. Journal of Clinical Neuroscience, 2013, 20, 1538-1545.	1.5	37
62	Seizure Types and Frequency in Patients Who "Fail―Temporal Lobectomy for Intractable Epilepsy. Neurosurgery, 2013, 73, 838-844.	1.1	37
63	Neurostimulation in people with drugâ€resistant epilepsy: Systematic review and metaâ€nalysis from the ILAE Surgical Therapies Commission. Epilepsia, 2022, 63, 1314-1329.	5.1	36
64	Seizure Outcomes in Occipital Lobe and Posterior Quadrant Epilepsy Surgery: A Systematic Review and Meta-Analysis. Neurosurgery, 2018, 82, 350-358.	1.1	34
65	White matter differences between essential tremor and Parkinson disease. Neurology, 2019, 92, e30-e39.	1.1	32
66	Resting-State SEEG May Help Localize Epileptogenic Brain Regions. Neurosurgery, 2020, 86, 792-801.	1.1	30
67	Surgical management of medically refractory epilepsy in patients with polymicrogyria. Epilepsia, 2016, 57, 151-161.	5.1	28
68	The transsylvian approach for resection of insular gliomas: technical nuances of splitting the Sylvian fissure. Journal of Neuro-Oncology, 2016, 130, 283-287.	2.9	28
69	Rates and predictors of seizure outcome after corpus callosotomy for drug-resistant epilepsy: a meta-analysis. Journal of Neurosurgery, 2019, 130, 1193-1202.	1.6	28
70	fMRI-based detection of alertness predicts behavioral response variability. ELife, 2021, 10, .	6.0	28
71	Characterization of postsurgical functional connectivity changes in temporal lobe epilepsy. Journal of Neurosurgery, 2020, 133, 392-402.	1.6	25
72	Removal of nail penetrating the basilar artery. Neurosurgical Review, 2010, 33, 501-504.	2.4	24

#	Article	IF	Citations
73	National trends and complication rates for invasive extraoperative electrocorticography in the USA. Journal of Clinical Neuroscience, 2015, 22, 823-827.	1.5	24
74	Impact of Timing of Concurrent Chemoradiation for Newly Diagnosed Glioblastoma. Neurosurgery, 2015, 62, 160-165.	1.1	23
75	Multiple Subpial Transections for Medically Refractory Epilepsy: A Disaggregated Review of Patient-Level Data. Neurosurgery, 2018, 82, 613-620.	1.1	21
76	Major and minor complications in extraoperative electrocorticography: A review of a national database. Epilepsy Research, 2016, 122, 26-29.	1.6	20
77	Integrating Network Neuroscience Into Epilepsy Care: Progress, Barriers, and Next Steps. Epilepsy Currents, 2022, 22, 272-278.	0.8	20
78	The persistent under-utilization of epilepsy surgery. Epilepsy Research, 2015, 118, 68-69.	1.6	19
79	Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor. Movement Disorders, 2020, 35, 1181-1188.	3.9	18
80	Spasm Freedom Following Microvascular Decompression for Hemifacial Spasm: Systematic Review and Meta-Analysis. World Neurosurgery, 2020, 139, e383-e390.	1.3	18
81	Temporal lobe epilepsy alters spatio-temporal dynamics of the hippocampal functional network. Neurolmage: Clinical, 2020, 26, 102254.	2.7	17
82	Divergent network properties that predict early surgical failure versus late recurrence in temporal lobe epilepsy. Journal of Neurosurgery, 2020, 132, 1324-1333.	1.6	17
83	Stereotactic EEG via multiple single-path omnidirectional trajectories within a single platform: institutional experience with a novel technique. Journal of Neurosurgery, 2018, 129, 1173-1181.	1.6	16
84	Role of the Nucleus Basalis as a Key Network Node in Temporal Lobe Epilepsy. Neurology, 2021, 96, e1334-e1346.	1.1	16
85	Presurgical temporal lobe epilepsy connectome fingerprint for seizure outcome prediction. Brain Communications, 2022, 4, .	3.3	16
86	Neurosurgical approaches to pediatric epilepsy: Indications, techniques, and outcomes of common surgical procedures. Seizure: the Journal of the British Epilepsy Association, 2020, 77, 76-85.	2.0	15
87	Deep Brain Stimulation Versus Peripheral Denervation for Cervical Dystonia: AÂSystematic Review and Meta-Analysis. World Neurosurgery, 2019, 122, e940-e946.	1.3	14
88	Microvascular Decompression for Trigeminal Neuralgia in Patients with Multiple Sclerosis: Predictors of Treatment Success. World Neurosurgery, 2020, 136, e165-e170.	1.3	14
89	The sensitivity and significance of lateralized interictal slow activity on magnetoencephalography in focal epilepsy. Epilepsy Research, 2016, 121, 21-28.	1.6	13
90	Long-Lasting Hyperexcitability Induced by Depolarization in the Absence of Detectable Ca ²⁺ Signals. Journal of Neurophysiology, 2009, 101, 1351-1360.	1.8	12

#	Article	IF	CITATIONS
91	Development of spike-wave seizures in C3H/HeJ mice. Epilepsy Research, 2009, 85, 53-59.	1.6	12
92	Brainstem Functional Connectivity Disturbances in Epilepsy may Recover After Successful Surgery. Neurosurgery, 2020, 86, 417-428.	1.1	12
93	Delayed neurological deficit following resection of tuberculum sellae meningioma: report of two cases, one with permanent and one with reversible visual impairment. Acta Neurochirurgica, 2014, 156, 1099-1102.	1.7	11
94	Pain experience using conventional versus angled anterior posts during stereotactic head frame placement for radiosurgery. Journal of Clinical Neuroscience, 2014, 21, 1538-1542.	1.5	11
95	Blunted neural response to emotional faces in the fusiform and superior temporal gyrus may be marker of emotion recognition deficits in pediatric epilepsy. Epilepsy and Behavior, 2020, 112, 107432.	1.7	11
96	Seizures in meningioma. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 170, 187-200.	1.8	11
97	People with mesial temporal lobe epilepsy have altered thalamo-occipital brain networks. Epilepsy and Behavior, 2021, 115, 107645.	1.7	10
98	Neurological Outcomes After Surgical or Conservative Management of Spontaneous Spinal Epidural Abscesses. Clinical Spine Surgery, 2019, 32, 18-29.	1.3	9
99	MRI network progression in mesial temporal lobe epilepsy related to healthy brain architecture. Network Neuroscience, 2021, 5, 434-450.	2.6	9
100	The Presto 1000: A novel automated transcranial Doppler ultrasound system. Journal of Clinical Neuroscience, 2015, 22, 1771-1775.	1.5	7
101	Network dysfunction in pre and postsurgical epilepsy: connectomics as a tool and not a destination. Current Opinion in Neurology, 2022, 35, 196-201.	3.6	7
102	SEEG Functional Connectivity Measures to Identify Epileptogenic Zones. Neurology, 2022, 98, .	1.1	7
103	Concurrent brain-responsive and vagus nerve stimulation for treatment of drug-resistant focal epilepsy. Epilepsy and Behavior, 2022, 129, 108653.	1.7	7
104	Effects of temporal lobectomy on consciousness-impairing and consciousness-sparing seizures in children. Child's Nervous System, 2013, 29, 1915-1922.	1.1	6
105	Editorial: Seizures with meningioma. Journal of Neurosurgery, 2016, 124, 1549-1551.	1.6	6
106	When the Brakes Fail: Basal Ganglia and Seizure Generalization. Epilepsy Currents, 2020, 20, 130-131.	0.8	6
107	Initial Experience with Using a Structured Light 3D Scanner and Image Registration to Plan Bedside Subdural Evacuating Port System Placement. World Neurosurgery, 2020, 137, 350-356.	1.3	6
108	Separating kindling and LTP: Lessons from studies of PKM zeta in developing and adult rats. Neuroscience Letters, 2009, 453, 229-232.	2.1	5

#	Article	IF	CITATIONS
109	Fornicotomy for the Treatment of Epilepsy: An Examination of Historical Literature in the Setting of Modern Operative Techniques. Neurosurgery, 2020, 87, 157-165.	1.1	5
110	Surface or Depth: A Paradigm Shift in Invasive Epilepsy Monitoring. Epilepsy Currents, 2020, 20, 348-350.	0.8	5
111	Bone Cement Cranioplasty Reduces Cerebrospinal Fluid Leak Rate after Microvascular Decompression: A Single-Institutional Experience. Journal of Neurological Surgery, Part B: Skull Base, 2021, 82, 556-561.	0.8	5
112	Characterization of resting functional MRI activity alterations across epileptic foci and networks. Cerebral Cortex, 2022, 32, 5555-5568.	2.9	5
113	Functional connectivity between mesial temporal and default mode structures may help lateralize surgical temporal lobe epilepsy. Journal of Neurosurgery, 2022, 137, 1571-1581.	1.6	5
114	Thalamotomy-Like Effects From Partial Removal of a Ventral Intermediate Nucleus Deep Brain Stimulator Lead in a Patient With Essential Tremor. Neurosurgery, 2015, 77, E831-E837.	1.1	4
115	Vagus nerve stimulation versus "best drug therapy―in epilepsy patients who have failed best drug therapy. Seizure: the Journal of the British Epilepsy Association, 2013, 22, 409-410.	2.0	3
116	Memory decline from hippocampal electrodes? Let's not forget statistics and study design. Epilepsia, 2018, 59, 502-503.	5.1	3
117	Experience From 211 Transcortical Selective Amygdalohippocampectomy Procedures: Relevant Surgical Anatomy and Review of the Literature. Operative Neurosurgery, 2021, 21, 181-188.	0.8	3
118	Failed epilepsy surgery: It is not too late. Epilepsy Research, 2015, 113, 151-152.	1.6	2
119	Resting-state hippocampal networks related to language processing reveal unique patterns in temporal lobe epilepsy. Epilepsy and Behavior, 2021, 117, 107834.	1.7	2
120	IMAGING Functional MRI in Basic Epilepsy Research. , 2009, , 539-544.		2
121	Retrosigmoid craniotomy for clipping of two vertebrobasilar junction aneurysms. Neurosurgical Focus, 2014, 36, 1.	2.3	1
122	Epilepsy surgery trends in the United States: Differences between children and adults. Epilepsia, 2015, 56, 1321-1321.	5.1	1
123	Continued medical management of drugâ€resistant epilepsy: implications for surgical consideration. Epilepsia, 2016, 57, 1525-1526.	5.1	1
124	Neuronal Tumors. Pediatric Oncology, 2017, , 171-186.	0.5	1
125	Addressing a Deep Problem With Magnetoencephalography. Epilepsy Currents, 2019, 19, 289-290.	0.8	1
126	SUDEP: The Worst in Epilepsy and the Hardest to Image. Epilepsy Currents, 2020, 20, 73-74.	0.8	1

#	Article	IF	CITATIONS
127	Establishing surface correspondence for post-surgical cortical thickness changes in temporal lobe epilepsy. , 2021, 11596, .		1
128	Of Blobs and Buzzes: Does SISCOM Imaging Actually Help SEEG Planning?. Epilepsy Currents, 2022, 22, 22-24.	0.8	1
129	Machine Learning to Address the Enigma of Temporal Lobe Epilepsy Lateralization. Epilepsy Currents, 2021, 21, 416-418.	0.8	1
130	An algorithmic approach to preoperative studies and patient selection for hemispheric disconnection surgery: a literature review. Epileptic Disorders, 2020, 22, 592-609.	1.3	1
131	Protocol for behavioral and neural recording during stimulation of the macaque monkey nucleus basalis. STAR Protocols, 2022, 3, 101136.	1.2	1
132	ASSFN Position Statement on Deep Brain Stimulation for Medication-Refractory Epilepsy. Neurosurgery, 2022, 90, 636-641.	1.1	1
133	Arousal and salience network connectivity alterations in surgical temporal lobe epilepsy. Journal of Neurosurgery, 2022, , 1-11.	1.6	1
134	Lead Cap Localization using Ultrasound in Deep Brain Stimulation Surgery: Technical Note. Minimally Invasive Neurosurgery, 2011, 54, 48-49.	0.9	0
135	106â€fFunctional Network Analysis in Surgical Epilepsy Patients Using Magnetoencephalography. Neurosurgery, 2015, 62, 198.	1.1	O
136	Venous Thromboembolism during Interventional MRI-Guided Stereotactic Surgery. Stereotactic and Functional Neurosurgery, 2018, 96, 40-45.	1.5	0
137	Network Changes after Epilepsy Surgery: It's Time to Reconnect. Epilepsy Currents, 2020, 20, 12-13.	0.8	O
138	In Epilepsy Surgery, Pathology Matters, and Lesions Need to Go. Epilepsy Currents, 2021, 21, 24-26.	0.8	0
139	The Underappreciated But Potentially Lethal Role of Brainstem Dysfunction in Epilepsy. Epilepsy Currents, 2021, 21, 153575972110042.	0.8	0
140	Body mass index and response to stereotactic radiosurgery in the treatment of refractory trigeminal neuralgia: A retrospective cohort study. Journal of Radiosurgery and SBRT, 2020, 6, 253-261.	0.2	0