
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1615686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Trametes versicolour</i> laccase immobilization by covalent binding and its application in Kraft E ₁ effluent pre-treated with ozone. Biocatalysis and Biotransformation, 2023, 41, 270-278.	2.0	2
2	Chitosan-coated poly (ƕcaprolactone) nanoparticles as acaricide carriers. Ticks and Tick-borne Diseases, 2022, 13, 101849.	2.7	2
3	Nanoremediation of toxic contaminants from the environment: challenges and scopes. , 2022, , 601-615.		1
4	Impact of intravesical instillation of a novel biological response modifier (P-MAPA) on progress of non-muscle invasive bladder cancer treatment in a rat model. Medical Oncology, 2022, 39, 24.	2.5	2
5	Effects of combined OncoTherad immunotherapy and probiotic supplementation on modulating the chronic inflammatory process in colorectal carcinogenesis. Tissue and Cell, 2022, 75, 101747.	2.2	7
6	Differentially expressed plasmatic microRNAs in Brazilian patients with Coronavirus disease 2019 (COVID-19): preliminary results. Molecular Biology Reports, 2022, 49, 6931-6943.	2.3	12
7	Biogenic Silver Nanoparticles Strategically Combined With Origanum vulgare Derivatives: Antibacterial Mechanism of Action and Effect on Multidrug-Resistant Strains. Frontiers in Microbiology, 2022, 13, .	3.5	10
8	Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered, 2022, 13, 14227-14258.	3.2	17
9	Violacein negatively modulates the colorectal cancer survival and epithelial–mesenchymal transition. Journal of Cellular Biochemistry, 2022, 123, 1247-1258.	2.6	3
10	Violacein switches off low molecular weight tyrosine phosphatase and rewires mitochondria in colorectal cancer cells. Bioorganic Chemistry, 2022, 127, 106000.	4.1	1
11	Editorial: Lipid Nanoparticles as a Novel Strategy to Deliver Bioactive Molecules. Frontiers in Chemistry, 2021, 9, 655480.	3.6	1
12	Amazonian tuber starch based films incorporated with silver nanoparticles for preservation of fruits. Research, Society and Development, 2021, 10, e23510615304.	0.1	4
13	Multi-target drug with potential applications: violacein in the spotlight. World Journal of Microbiology and Biotechnology, 2021, 37, 151.	3.6	19
14	Patents on Violacein: A Compound with Great Diversity of Biological Activities and Industrial Potential. Recent Patents on Biotechnology, 2021, 15, 102-111.	0.8	5
15	Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Critical Reviews in Biotechnology, 2020, 40, 15-30.	9.0	52
16	P-mapa, a promisor immunomodulator against tumor cells of colonic tissues: An investigation of the action mechanism over the TLR4 signaling pathway. Life Sciences, 2020, 242, 117185.	4.3	0
17	Thiol-antioxidants interfere with assessing silver nanoparticle cytotoxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102130.	3.3	15
18	New Sustainable Process for Hesperidin Isolation and Anti-Ageing Effects of Hesperidin Nanocrystals. Molecules, 2020, 25, 4534.	3.8	45

#	Article	IF	CITATIONS
19	Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Frontiers in Chemistry, 2020, 8, 601151.	3.6	9
20	Assessment of in vitro cytotoxicity of imidazole ionic liquids and inclusion in targeted drug carriers containing violacein. RSC Advances, 2020, 10, 29336-29346.	3.6	19
21	Hybrid graphene oxide as carrier of doxorubicin: cytotoxicity and preliminary in vivo assays against bladder cancer. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 025016.	1.5	1
22	What is the potential use of platelet-rich-plasma (PRP) in cancer treatment? A mini review. Heliyon, 2020, 6, e03660.	3.2	16
23	Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 162-170.	4.3	26
24	What do we Really Know about Nanotoxicology of Silver Nanoparticles In vivo? New Aspects, Possible Mechanisms, and Perspectives. Current Nanoscience, 2020, 16, 292-320.	1.2	11
25	SÃntese verde de nanopartÃculas de prata intermediada por fungo anamórfico e eficácia antibacteriana e antifúngica. Boletim Do Museu Paraense EmÃ l io Goeldi Ciências Naturais (Impresso), 2020, 15, 433-443.	0.2	1
26	Nanoformulation as a tool for improvement of thiamethoxam encapsulation and evaluation of ecotoxicological impacts. Energy, Ecology and Environment, 2019, 4, 310-317.	3.9	7
27	Violacein@Biogenic Ag system: synergistic antibacterial activity against Staphylococcus aureus. Biotechnology Letters, 2019, 41, 1433-1437.	2.2	8
28	Toxicity removal by Daphinia similis assay in BTEX contaminated groundwater using nanometric TiO ₂ /ZrO ₂ film and black light. Journal of Physics: Conference Series, 2019, 1323, 012012.	0.4	2
29	Development of biocarrier for violacein controlled release in the treatment of cancer. Reactive and Functional Polymers, 2019, 136, 122-130.	4.1	11
30	Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World Journal of Microbiology and Biotechnology, 2019, 35, 88.	3.6	109
31	Effect of carbon nanotubes on the biodegradability of poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) nanocomposites. Journal of Applied Polymer Science, 2019, 136, 48020.	2.6	10
32	PHBV/MWCNT Films: Hydrophobicity, Thermal and Mechanical Properties as a Function of MWCNT Concentration. Journal of Composites Science, 2019, 3, 12.	3.0	11
33	In vitro cardiotoxicity evaluation of graphene oxide. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 841, 8-13.	1.7	31
34	Biogenic Silver Nanoparticles as a Post-surgical Treatment for Corynebacterium pseudotuberculosis Infection in Small Ruminants. Frontiers in Microbiology, 2019, 10, 824.	3.5	28
35	Nitric Oxide-Releasing Engineered Nanoparticles: Tools for Overcoming Drug Resistance in Chemotherapy. , 2019, , 3-28.		2
36	OncoTherad: A New Nanobiological Response Modifier, its Toxicological and Anticancer Activities. Journal of Physics: Conference Series, 2019, 1323, 012018.	0.4	7

#	Article	IF	CITATIONS
37	N-Acetylcysteine reverses silver nanoparticle intoxication in rats. Nanotoxicology, 2019, 13, 326-338.	3.0	18
38	Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. International Journal of Food Microbiology, 2019, 291, 79-86.	4.7	116
39	Nitric oxide donors for prostate and bladder cancers: Current state and challenges. European Journal of Pharmacology, 2018, 826, 158-168.	3.5	27
40	Synthesis of extracellular gold nanoparticles using <i>Cupriavidus metallidurans</i> CH34 cells. IET Nanobiotechnology, 2018, 12, 40-46.	3.8	24
41	Effects of intravesical therapy with platelet-rich plasma (PRP) and Bacillus Calmette-Guérin (BCG) in non-muscle invasive bladder cancer. Tissue and Cell, 2018, 52, 17-27.	2.2	19
42	Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Tropica, 2018, 178, 46-54.	2.0	69
43	Cellulose nanocrystals as carriers in medicine and their toxicities: A review. Carbohydrate Polymers, 2018, 181, 514-527.	10.2	179
44	NMR insights on nano silver post-surgical treatment of superficial caseous lymphadenitis in small ruminants. RSC Advances, 2018, 8, 40778-40786.	3.6	12
45	Solid Lipid Nanoparticles for Dibucaine Sustained Release. Pharmaceutics, 2018, 10, 231.	4.5	31
46	Electron Paramagnetic Resonance and Small-Angle X-ray Scattering Characterization of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Dibucaine Encapsulation. Langmuir, 2018, 34, 13296-13304.	3.5	19
47	Nanopharmaceuticals and Their Applications in Bladder Cancer Therapy: a Mini Review. Journal of the Brazilian Chemical Society, 2018, , .	0.6	3
48	Development and Tailoring of Hybrid Lipid Nanocarriers. Current Pharmaceutical Design, 2018, 23, 6643-6658.	1.9	15
49	Biogenic Synthesized Ag/Au Nanoparticles: Production, Characterization, and Applications. Current Nanoscience, 2018, 14, 82-94.	1.2	43
50	Nanopharmaceuticals as a solution to neglected diseases: Is it possible?. Acta Tropica, 2017, 170, 16-42.	2.0	51
51	Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids and Surfaces B: Biointerfaces, 2017, 154, 123-132.	5.0	94
52	Antimicrobial textiles: Biogenic silver nanoparticles against Candida and Xanthomonas. Materials Science and Engineering C, 2017, 75, 582-589.	7.3	119
53	Action and function of Chromobacterium violaceum in health and disease: Violacein as a promising metabolite to counteract gastroenterological diseases. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 649-656.	2.4	17
54	Interaction of violacein in models for cellular membranes: Regulation of the interaction by the lipid composition at the air-water interface. Colloids and Surfaces B: Biointerfaces, 2017, 160, 247-253.	5.0	27

#	Article	IF	CITATIONS
55	<i>In vivo</i> nanotoxicological profile of graphene oxide. Journal of Physics: Conference Series, 2017, 838, 012026.	0.4	7
56	Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria. Journal of Physics: Conference Series, 2017, 838, 012028.	0.4	16
57	Antibacterial activity of nitric oxide releasing silver nanoparticles. Journal of Physics: Conference Series, 2017, 838, 012031.	0.4	19
58	Polymeric film of 6-arm-poly(ethylene glycol) amine graphene oxide with poly (ε-caprolactone): Adherence and growth of adipose derived mesenchymal stromal cells culture on rat bladder. Journal of Physics: Conference Series, 2017, 838, 012035.	0.4	2
59	Electrospun poly(ethylene oxide)/chitosan nanofibers with cellulose nanocrystals as support for cell culture of 3T3 fibroblasts. Cellulose, 2017, 24, 3353-3365.	4.9	33
60	Silver nanoparticles in dentistry. Dental Materials, 2017, 33, 1110-1126.	3.5	213
61	Silver Nanoparticles for Treatment of Neglected Diseases. , 2017, , 39-51.		1
62	Natural lipids in nanostructured lipid carriers and its cytotoxicity. Journal of Physics: Conference Series, 2017, 838, 012027.	0.4	4
63	Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 2017, 158, 190-196.	5.0	20
64	Use of nanoparticles as a potential antimicrobial for food packaging. , 2017, , 413-447.		14
65	Characterization of PCL and Chitosan Nanoparticles as Carriers of Enoxaparin and Its Antithrombotic Effect in Animal Models of Venous Thrombosis. Journal of Nanotechnology, 2017, 2017, 1-7.	3.4	12
66	Nitric Oxide Donors for Treating Neglected Diseases. , 2017, , 25-53.		5
67	Silver and Silver Chloride Nanoparticles and their Anti-Tick Activity: a Mini Review. Journal of the Brazilian Chemical Society, 2017, , .	0.6	3
68	Nanotherapy: a next generation hallmark for combating cancer. , 2017, , 811-830.		2
69	Antibacterial Combination of Oleoresin from Copaifera multijuga Hayne and Biogenic Silver Nanoparticles Towards Streptococcus agalactiae. Current Pharmaceutical Biotechnology, 2017, 18, 177-190.	1.6	13
70	Nanoparticulated Nitric Oxide Donors and their Biomedical Applications. Mini-Reviews in Medicinal Chemistry, 2017, 17, 216-223.	2.4	32
71	Nanobiotechnology Solutions againstAedes aegypti. Journal of the Brazilian Chemical Society, 2016, , .	0.6	4
72	Preparation and Characterization of Maleic Anhydride Grafted Poly(Hydroxybutirate-CO-Hydroxyvalerate) – PHBV-g-MA. Materials Research, 2016, 19, 229-235.	1.3	40

#	Article	IF	CITATIONS
73	Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains. Frontiers in Microbiology, 2016, 7, 760.	3.5	115
74	Nanobiotechnology of Carbon Dots: A Review. Journal of Biomedical Nanotechnology, 2016, 12, 1323-1347.	1.1	44
75	Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer, 2016, 16, 422.	2.6	36
76	Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochemistry, 2016, 51, 1306-1313.	3.7	101
77	Violacein induces death of RAS-mutated metastatic melanoma by impairing autophagy process. Tumor Biology, 2016, 37, 14049-14058.	1.8	19
78	Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Applied Microbiology and Biotechnology, 2016, 100, 6555-6570.	3.6	203
79	Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review. Biotechnology Advances, 2016, 34, 1030-1045.	11.7	126
80	Doxorubicin-Functionalized Silica Nanoparticles Incorporated into a Thermoreversible Hydrogel and Intraperitoneally Administered Result in High Prostate Antitumor Activity and Reduced Cardiotoxicity of Doxorubicin. ACS Biomaterials Science and Engineering, 2016, 2, 1190-1199.	5.2	35
81	Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids and Surfaces B: Biointerfaces, 2016, 143, 168-176.	5.0	83
82	Nanotoxicology of Carbon-Based Nanomaterials. Nanomedicine and Nanotoxicology, 2016, , 105-137.	0.2	2
83	Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 789-799.	3.3	1,082
84	Combination of fluconazole with silver nanoparticles produced by <i>Fusarium oxysporum</i> improves antifungal effect against planktonic cells and biofilm of drug-resistant <i>Candida albicans</i> . Medical Mycology, 2016, 54, 428-432.	0.7	62
85	Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL). Frontiers in Nanoscience and Nanotechnology, 2016, 2, 107-110.	0.3	22
86	Silver nanoparticle protein corona and toxicity: a mini-review. Journal of Nanobiotechnology, 2015, 13, 55.	9.1	257
87	Interlab study on nanotoxicology of representative graphene oxide. Journal of Physics: Conference Series, 2015, 617, 012019.	0.4	7
88	Graphene oxide sheets-based platform for induced pluripotent stem cells culture: toxicity, adherence, growth and application. Journal of Physics: Conference Series, 2015, 617, 012021.	0.4	3
89	Monitoring the Hemolytic Effect of Mesoporous Silica Nanoparticles after Human Blood Protein Corona Formation. European Journal of Inorganic Chemistry, 2015, 2015, 4595-4602.	2.0	38
90	Nanotoxicology of Metal Oxide Nanoparticles. Metals, 2015, 5, 934-975.	2.3	172

#	Article	IF	CITATIONS
91	Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells. PLoS ONE, 2015, 10, e0125409.	2.5	25
92	Effect of Eugenol against <i>Streptococcus agalactiae</i> and Synergistic Interaction with Biologically Produced Silver Nanoparticles. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-8.	1.2	38
93	Synthesis of silver nanoparticles by <i>Phoma gardeniae</i> and <i>in vitro</i> evaluation of their efficacy against human diseaseâ€causing bacteria and fungi. IET Nanobiotechnology, 2015, 9, 71-75.	3.8	51
94	Nanoparticles-Based Delivery Systems in Plant Genetic Transformation. , 2015, , 209-239.		7
95	Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a miniâ€review. IET Nanobiotechnology, 2015, 9, 314-323.	3.8	50
96	Nanodevices for the immobilization of therapeutic enzymes. Critical Reviews in Biotechnology, 2015, 36, 1-18.	9.0	54
97	Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. Journal of Materials Research, 2015, 30, 55-65.	2.6	123
98	Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnology Letters, 2015, 37, 2099-2120.	2.2	153
99	Enhanced Materials from Nature: Nanocellulose from Citrus Waste. Molecules, 2015, 20, 5908-5923.	3.8	116
100	Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends in Biotechnology, 2015, 33, 621-636.	9.3	159
101	Polymeric Nanoparticles of Enoxaparin as a Delivery System: In Vivo Evaluation in Normal Rats and in a Venous Thrombosis Rat Model. Journal of Nanoscience and Nanotechnology, 2015, 15, 4837-4843.	0.9	9
102	Three <i>Phoma</i> spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy. IET Nanobiotechnology, 2015, 9, 280-287.	3.8	36
103	Graphene Oxide: A Carrier for Pharmaceuticals and a Scaffold for Cell Interactions. Current Topics in Medicinal Chemistry, 2015, 15, 309-327.	2.1	45
104	Emerging Role of Nanocarriers in Delivery of Nitric Oxide for Sustainable Agriculture. , 2015, , 183-207.		1
105	Alterations in ubiquitin ligase Siah-2 and its corepressor N-CoR after P-MAPA immunotherapy and anti-androgen therapy: new therapeutic opportunities for non-muscle invasive bladder cancer. International Journal of Clinical and Experimental Pathology, 2015, 8, 4427-43.	0.5	7
106	Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. SpringerPlus, 2014, 3, 645.	1.2	56
107	In Vitro Cytotoxicity Assays of Nanoparticles on Different Cell Lines. Nanomedicine and Nanotoxicology, 2014, , 111-123.	0.2	4
108	<i>β</i> -Glucosidase immobilisation on synthetic superparamagnetic magnetite nanoparticles and their application in saccharification of wheat straw and <i>Eucalyptus globulus</i> pulps. Journal of Experimental Nanoscience, 2014, 9, 177-185.	2.4	19

#	Article	IF	CITATIONS
109	Preparation of an agarâ€silver nanoparticles (Aâ€AgNp) film for increasing the shelfâ€life of fruits. IET Nanobiotechnology, 2014, 8, 190-195.	3.8	25
110	Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Applied Microbiology and Biotechnology, 2014, 98, 1951-1961.	3.6	341
111	Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	75
112	Green synthesis of silver nanoparticles by Phoma glomerata. Micron, 2014, 59, 52-59.	2.2	126
113	Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Applied Microbiology and Biotechnology, 2014, 98, 1001-1009.	3.6	408
114	Cytotoxicity and Genotoxicity of Biogenically Synthesized Silver Nanoparticles. Nanomedicine and Nanotoxicology, 2014, , 245-263.	0.2	12
115	Cyto-, Geno-, and Ecotoxicity of Copper Nanoparticles. Nanomedicine and Nanotoxicology, 2014, , 325-345.	0.2	7
116	Nanotoxicity of Graphene and Graphene Oxide. Chemical Research in Toxicology, 2014, 27, 159-168.	3.3	729
117	In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters, 2014, 115, 13-17.	2.6	316
118	Nanosilver: an inorganic nanoparticle with myriad potential applications. Nanotechnology Reviews, 2014, 3, .	5.8	37
119	Nanoremediation. , 2014, , 233-250.		18
120	Topography-driven bionano-interactions on colloidal silica nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 3437-3447.	8.0	27
121	Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 1-10.	1.7	53
122	Preparation and Application of Mucoadhesive Nanoparticles Containing Enoxaparin in a Wound Healing Animal Model. Current Nanoscience, 2014, 10, 779-785.	1.2	3
123	Cytotoxicity and Genotoxicity of Solid Lipid Nanoparticles. Nanomedicine and Nanotoxicology, 2014, , 229-244.	0.2	1
124	Bioremediation and Biotransformation of Carbon Nanostructures Through Enzymatic and Microbial Systems. , 2014, , 101-121.		0
125	Screening of different species of <i>Phoma</i> for the synthesis of silver nanoparticles. Biotechnology and Applied Biochemistry, 2013, 60, 482-493.	3.1	30
126	Influence of Protein Corona on the Transport of Molecules into Cells by Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2013, 5, 8387-8393.	8.0	57

NELSON DURÃIN

#	Article	IF	CITATIONS
127	Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Annals of Clinical Microbiology and Antimicrobials, 2013, 12, 12.	3.8	88
128	Redoxâ€enzymes, cells and microâ€organisms acting on carbon nanostructures transformation: A miniâ€review. Biotechnology Progress, 2013, 29, 1-10.	2.6	17
129	Structural Effects of Dibucaine Encapsulation into Solid Lipid Nanoparticles and Nanostructured Lipid Carriers. Biophysical Journal, 2013, 104, 344a.	0.5	1
130	Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science and Technology, 2013, 48, 1127-1134.	2.7	184
131	Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnology Letters, 2013, 35, 1365-1375.	2.2	157
132	Biological applications of peptides nanotubes: An overview. Peptides, 2013, 39, 47-54.	2.4	59
133	Insulin-Loaded Poly(ε-Caprolactone) Nanoparticles: Efficient, Sustained and Safe Insulin Delivery System. Journal of Biomedical Nanotechnology, 2013, 9, 1098-1106.	1.1	18
134	Development of a Sustained-release System for Nitric Oxide Delivery using Alginate/Chitosan Nanoparticles. Current Nanoscience, 2013, 9, 1-7.	1.2	4
135	Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET Nanobiotechnology, 2013, 7, 90-99.	3.8	76
136	New Hybrid Material Based on Layered Double Hydroxides and Biogenic Silver Nanoparticles: Antimicrobial Activity and Cytotoxic Effect. Journal of the Brazilian Chemical Society, 2013, 24, 266-272.	0.6	29
137	Nanocellulose and Bioethanol Production from Orange Waste using Isolated Microorganisms. Journal of the Brazilian Chemical Society, 2013, , .	0.6	22
138	Screening of DifferentFusariumSpecies to Select Potential Species for the Synthesis of Silver Nanoparticles. Journal of the Brazilian Chemical Society, 2013, , .	0.6	9
139	Review of Cellulose Nanocrystals Patents: Preparation, Composites and General Applications. Recent Patents on Nanotechnology, 2012, 6, 16-28.	1.3	95
140	Nanotechnology Allied to Nitric Oxide Release Materials for Dermatological Applications. Current Nanoscience, 2012, 8, 520-525.	1.2	24
141	The violacein biosynthesis monitored by multi-wavelength fluorescence spectroscopy and by the PARAFAC method. Journal of the Brazilian Chemical Society, 2012, 23, 2054-2064.	0.6	4
142	Biomedical applications of nanobiosensors: the state-of-the-art. Journal of the Brazilian Chemical Society, 2012, , .	0.6	22
143	Effects of P-MAPA Immunomodulator on Toll-Like Receptors and p53: Potential Therapeutic Strategies for Infectious Diseases and Cancer. Infectious Agents and Cancer, 2012, 7, 14.	2.6	40
144	Biotechnological Routes to Metallic Nanoparticles Production: Mechanistic Aspects, Antimicrobial Activity, Toxicity and Industrial Applications. , 2012, , 337-374.		13

NELSON DURÃIN

#	Article	IF	CITATIONS
145	Nano-Silver Toxicity: Emerging Concerns and Consequences in Human Health. , 2012, , 525-548.		24
146	Processing and characterization of composites of poly(3-hydroxybutyrate- <i>co</i> -hydroxyvalerate) and lignin from sugar cane bagasse. Journal of Composite Materials, 2012, 46, 417-425.	2.4	55
147	Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, 2012, 32, 867-879.	2.8	435
148	Potential applications of violacein: a microbial pigment. Medicinal Chemistry Research, 2012, 21, 1524-1532.	2.4	99
149	Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Applied Microbiology and Biotechnology, 2012, 95, 275-288.	3.6	101
150	Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids and Surfaces B: Biointerfaces, 2012, 93, 36-40.	5.0	147
151	Retinyl palmitate polymeric nanocapsules as carriers of bioactives. Journal of Colloid and Interface Science, 2012, 382, 36-47.	9.4	20
152	Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse. PLoS ONE, 2012, 7, e45362.	2.5	42
153	Microbial Syntheses of Metallic Sulfide Nanoparticles: An Overview. Current Biotechnology, 2012, 1, 287-296.	0.4	18
154	491 PUTATIVE CANCER STEM CELLS (CSCS) SIGNALING AFTER IMMUNOTHERAPY WITH BACILLUS CALMETTE-GUERIN (BCG) AND P-MAPA IN THE SUPERFICIAL BLADDER CANCER (SBC). Journal of Urology, 2011, 185, .	0.4	2
155	Topical Application of Nanostructures: Solid Lipid, Polymeric and Metallic Nanoparticles. , 2011, , 69-99.		4
156	Biogenic Silver Nanoparticles: Application in Medicines and Textiles and Their Health Implications. , 2011, , 249-267.		6
157	DILUTED ACID PRETREATMENT OF PINUS RADIATA FOR BIOETHANOL PRODUCTION USING IMMOBILIZED SACCHAROMYCES CEREVISIAE IR2-9 IN A SIMULTANEOUS SACCHARIFICATION AND FERMENTATION PROCESS. Journal of the Chilean Chemical Society, 2011, 56, 901-906.	1.2	5
158	A MINIREVIEW OF CELLULOSE NANOCRYSTALS AND ITS POTENTIAL INTEGRATION AS CO-PRODUCT IN BIOETHANOL PRODUCTION. Journal of the Chilean Chemical Society, 2011, 56, 672-677.	1.2	79
159	Antibacterial activity of violacein against Staphylococcus aureus isolated from Bovine Mastitis. Journal of Antibiotics, 2011, 64, 395-397.	2.0	49
160	Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology, 2011, 90, 1609-1624.	3.6	422
161	Quality Attributes of Cupua§u Juice in Response to Treatment with Crude Enzyme Extract Produced by <i>Aspergillus japonicus</i> 586. Enzyme Research, 2011, 2011, 1-6.	1.8	6

Nanomedicine: Potential Killing of Cancercells Using Nanoparticles. , 2011, , 229-238.

0

#	Article	IF	CITATIONS
163	A New Report on Mycosynthesis of Silver Nanoparticles by Fusarium culmorum. Current Nanoscience, 2010, 6, 376-380.	1.2	77
164	Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society, 2010, 21, 949-959.	0.6	366
165	Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process. Journal of Nanoparticle Research, 2010, 12, 285-292.	1.9	38
166	Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chemico-Biological Interactions, 2010, 186, 43-52.	4.0	74
167	Colorectal cancer chemoprevention by 2 βâ€cyclodextrin inclusion compounds of auraptene and 4′â€geranyloxyferulic acid. International Journal of Cancer, 2010, 126, 830-840.	5.1	67
168	Targeted antitumoral dehydrocrotonin nanoparticles with Lâ€ascorbic acid 6â€stearate. J Pharm Sci 98: 4796–4807. Journal of Pharmaceutical Sciences, 2010, 99, 2529.	3.3	0
169	Retinyl palmitate flexible polymeric nanocapsules: Characterization and permeation studies. Colloids and Surfaces B: Biointerfaces, 2010, 81, 374-380.	5.0	52
170	Tecnologia de nanocristais em fÃ _i rmacos. Quimica Nova, 2010, 33, 151-158.	0.3	11
171	Fungi-Mediated Synthesis of Silver Nanoparticles: Characterization Processes and Applications. , 2010, , 425-449.		19
172	Nitric oxide-releasing vehicles for biomedical applications. Journal of Materials Chemistry, 2010, 20, 1624-1637.	6.7	214
173	Antitumoral activity of L-ascorbic acid-poly- D,L-(lactide-co-glycolide) nanoparticles containing violacein. International Journal of Nanomedicine, 2010, 5, 77-85.	6.7	13
174	Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent. International Journal of Environmental Research and Public Health, 2009, 6, 1145-1154.	2.6	27
175	Violacein Extracted from <i>Chromobacterium violaceum</i> Inhibits <i>Plasmodium</i> Growth In Vitro and In Vivo. Antimicrobial Agents and Chemotherapy, 2009, 53, 2149-2152.	3.2	95
176	A biotechnological product and its potential as a new immunomodulator for treatment of animal phlebovirus infection: Punta Toro virus. Antiviral Research, 2009, 83, 143-147.	4.1	10
177	Targeted antitumoral dehydrocrotonin nanoparticles with L-ascorbic acid 6-stearate. Journal of Pharmaceutical Sciences, 2009, 98, 4796-4807.	3.3	10
178	Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 45, 89-94.	1.5	68
179	Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. Journal of Alloys and Compounds, 2009, 488, 227-231.	5.5	140
180	Nanocytotoxicity: Violacein and Violacein-Loaded Poly (<i>D</i> , <i>L</i> -lactide-co-glycolide) Nanoparticles Acting on Human Leukemic Cells. Journal of Biomedical Nanotechnology, 2009, 5, 192-201.	1.1	14

#	Article	IF	CITATIONS
181	State of the Art of Nanobiotechnology Applications in Neglected Diseases. Current Nanoscience, 2009, 5, 396-408.	1.2	22
182	Annatto Polymeric Microparticles: Natural Product Encapsulation by the Emulsion–Solvent Evaporation Method. Journal of Chemical Education, 2008, 85, 946.	2.3	11
183	New Aspects of Nanopharmaceutical Delivery Systems. Journal of Nanoscience and Nanotechnology, 2008, 8, 2216-2229.	0.9	198
184	Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. Journal of Biomedical Nanotechnology, 2007, 3, 203-208.	1.1	798
185	Toxicity Assay in Kraft E1Effluent Treated by Ozone: Algae Growth Inhibition and Cytotoxicity in V79 Cells. Ozone: Science and Engineering, 2007, 29, 47-53.	2.5	4
186	Influence of Organic Amendment on the Biodegradation and Movement of Pesticides. Critical Reviews in Environmental Science and Technology, 2007, 37, 233-271.	12.8	132
187	Determination of Phenolic Compounds Based on Co-Immobilization of Methylene Blue and HRP on Multi-Wall Carbon Nanotubes. Electroanalysis, 2007, 19, 549-554.	2.9	36
188	Laccase induction in fungi and laccase/N–OH mediator systems applied in paper mill effluent. Bioresource Technology, 2007, 98, 158-164.	9.6	93
189	Phenols removal in musts: Strategy for wine stabilization by laccase. Journal of Molecular Catalysis B: Enzymatic, 2007, 45, 102-107.	1.8	73
190	Violacein: properties and biological activities. Biotechnology and Applied Biochemistry, 2007, 48, 127-133.	3.1	169
191	Quantification of Lactobacillus in fermented milk by multivariate image analysis with least-squares support-vector machines. Analytical and Bioanalytical Chemistry, 2007, 387, 1105-1112.	3.7	30
192	Comparative toxicity of effluents processed by different treatments in V79 fibroblasts and the Algae Selenastrum capricornutum. Chemosphere, 2006, 62, 1207-1213.	8.2	10
193	Evaluation of boron removal from water by hydrotalcite-like compounds. Chemosphere, 2006, 62, 80-88.	8.2	158
194	Cytotoxic activity of violacein in human colon cancer cells. Toxicology in Vitro, 2006, 20, 1514-1521.	2.4	89
195	Comparação da eficiência do processo de ozonização e ozonização catalÃŧica (Mn II e Cu II) na degradação de fenol. Quimica Nova, 2006, 29, 24-27.	0.3	12
196	Antibacterial Activity of Chitosan Solutions for Wound Dressing. Macromolecular Symposia, 2006, 245-246, 515-518.	0.7	23
197	Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's Blue on multi-wall carbon nanotube. Electrochimica Acta, 2006, 52, 215-220.	5.2	68
198	Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis, 2006, 27, 508-516.	2.8	129

#	Article	IF	CITATIONS
199	Cytotoxicity on V79 and HL60 Cell Lines by Thiolated- <i>β</i> -Cyclodextrin-Au/Violacein Nanoparticles. Journal of Biomedical Nanotechnology, 2005, 1, 352-358.	1.1	13
200	Dehydrocrotonin and its β-cyclodextrin complex: Cytotoxicity in V79 fibroblasts and rat cultured hepatocytes. European Journal of Pharmacology, 2005, 510, 17-24.	3.5	22
201	Biosensor for H2O2 Response Based on Horseradish Peroxidase: Effect of Different Mediators Adsorbed on Silica Gel Modified with Niobium Oxide. Electroanalysis, 2005, 17, 1103-1111.	2.9	27
202	The use of violacein to study biochemical behaviour ofSaccharomyces cerevisiae cells. European Journal of Drug Metabolism and Pharmacokinetics, 2005, 30, 225-229.	1.6	4
203	Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 2005, 3, 8.	9.1	813
204	Effects of kraft pulping on the interfacial properties of Eucalyptus pulp fibres. Journal of the Brazilian Chemical Society, 2005, 16, 915-921.	0.6	8
205	Determination of Mechanical and Optical Properties of Eucalyptus Kraft Pulp by NIR Spectrometry and Multivariate Calibration. Journal of Wood Chemistry and Technology, 2005, 25, 267-279.	1.7	18
206	Fungal Diversity and Use in Decomposition of Environmental Pollutants. Critical Reviews in Microbiology, 2005, 31, 197-212.	6.1	130
207	Influences of surface chemical composition on the mechanical properties of pulp as investigated by SEM, XPS and multivariate data analysis. Journal of the Brazilian Chemical Society, 2005, 16, 163-170.	0.6	4
208	PHYSICO-CHEMICAL CHARACTERIZATION OF THE INCLUSION COMPLEX BETWEEN A 2-PROPEN-1-AMINE DERIVATIVE AND b-CYCLODEXTRIN. Journal of the Chilean Chemical Society, 2005, 50, .	1.2	2
209	Natural killer cell activity and anti-tumour effects of dehydrocrotonin and its synthetic derivatives. European Journal of Pharmacology, 2004, 487, 47-54.	3.5	13
210	Dehydrocrotonin and its derivative, dimethylamide-crotonin induce apoptosis with lipid peroxidation and activation of caspases-2, -6 and -9 in human leukemic cells HL60. Toxicology, 2004, 203, 123-137.	4.2	9
211	Remediation of Kraft Effluent by Ozonation: Effect of Applied Ozone Concentration and Initial pH. Ozone: Science and Engineering, 2004, 26, 317-322.	2.5	26
212	Molecular mechanism of violacein-mediated human leukemia cell death. Blood, 2004, 104, 1459-1464.	1.4	124
213	Retention of cellulose, xylan and lignin in kraft pulping of eucalyptus studied by multivariate data analysis: influences on physicochemical and mechanical properties of pulp. Journal of the Brazilian Chemical Society, 2004, 15, 514-522.	0.6	18
214	Decolorization of reactive dyes by immobilized laccase. Applied Catalysis B: Environmental, 2003, 42, 131-144.	20.2	175
215	Dual amperometric biosensor device for analysis of binary mixtures of phenols by multivariate calibration using partial least squares. Analytica Chimica Acta, 2003, 485, 263-269.	5.4	47
216	Influence of protein phosphatase inhibitors on HL60 cells death induction by dehydrocrotonin. Leukemia Research, 2003, 27, 823-829.	0.8	24

#	Article	IF	CITATIONS
217	Violacein and its β-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology, 2003, 186, 217-225.	4.2	74
218	Comparative cytotoxicity of dimethylamide-crotonin in the promyelocytic leukemia cell line (HL60) and human peripheral blood mononuclear cells. Toxicology, 2003, 188, 261-274.	4.2	59
219	Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 223, 263-276.	4.7	96
220	Phenolic compounds and total antioxidant potential of commercial wines. Food Chemistry, 2003, 82, 409-416.	8.2	281
221	Comparison of the gastroprotective effect of a diterpene lactone isolated from Croton cajucara with its synthetic derivatives. Journal of Ethnopharmacology, 2003, 87, 169-174.	4.1	27
222	Evaluation of the antiulcerogenic activity of violacein and its modulation by the inclusion complexation with β-cyclodextrin. Canadian Journal of Physiology and Pharmacology, 2003, 81, 387-396.	1.4	39
223	Cytotoxic Effect of the Diterpene Lactone Dehydrocrotonin from Croton cajucara on Human Promyelocytic Leukemia Cells. Planta Medica, 2003, 69, 67-69.	1.3	24
224	3-[4'-Bromo-(1,1'-biphenyl)-4-yl]-N,N-dimethyl-3-(2-thienyl)-2-propen-1-amine: synthesis, cytotoxicity, and leishmanicidal, trypanocidal and antimycobacterial activities. Journal of Antimicrobial Chemotherapy, 2002, 50, 629-637.	3.0	15
225	MULTIVARIATE CALIBRATION FOR QUANTITATIVE ANALYSIS OF EUCALYPT KRAFT PULP BY NIR SPECTROMETRY. Journal of Wood Chemistry and Technology, 2002, 22, 67-81.	1.7	37
226	Electrochemical biosensor-based devices for continuous phenols monitoring in environmental matrices. Journal of the Brazilian Chemical Society, 2002, 13, 456.	0.6	47
227	Ecological-Friendly Pigments From Fungi. Critical Reviews in Food Science and Nutrition, 2002, 42, 53-66.	10.3	149
228	LACCASE-BASED SCREEN PRINTED ELECTRODE FOR AMPEROMETRIC DETECTION OF PHENOLIC COMPOUNDS. Analytical Letters, 2002, 35, 29-38.	1.8	36
229	Mixed enzyme (laccase/tyrosinase)-based remote electrochemical biosensor for monitoring phenolic compounds. Analyst, The, 2002, 127, 258-261.	3.5	56
230	Hydrogen peroxide assisted photochemical degradation of ethylenediaminetetraacetic acid. Journal of Environmental Management, 2002, 7, 197-202.	1.7	33
231	Potential applications of laccase in the food industry. Trends in Food Science and Technology, 2002, 13, 205-216.	15.1	376
232	Semiempirical INDO/S study on the absorption spectrum of violacein. Computational and Theoretical Chemistry, 2002, 580, 85-90.	1.5	7
233	Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and Microbial Technology, 2002, 31, 907-931.	3.2	674
234	Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft E1 paper mill effluent. Analytica Chimica Acta, 2002, 463, 229-238.	5.4	84

#	Article	IF	CITATIONS
235	Chromobacterium violaceum: A Review of Pharmacological and Industiral Perspectives. Critical Reviews in Microbiology, 2001, 27, 201-222.	6.1	207
236	Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds. Talanta, 2001, 54, 681-686.	5.5	156
237	Combined treatment of textile effluent using the sequence Phanerochaete chrysosporium–ozone. Chemosphere, 2001, 44, 281-287.	8.2	39
238	Biossensores amperométricos para determinação de compostos fenólicos em amostras de interesse ambiental. Quimica Nova, 2001, 24, 77-86.	0.3	42
239	Kinetic studies on veratryl alcohol transformation by horseradish peroxidase. Journal of Inorganic Biochemistry, 2001, 84, 279-286.	3.5	6
240	Cytotoxicity of derivatives from dehydrocrotonin on V79 cells and Escherichia coli. Toxicology, 2001, 159, 135-141.	4.2	20
241	Title is missing!. Biotechnology Letters, 2001, 23, 1963-1969.	2.2	56
242	Biodegradation of Chlorolignin and Lignin-Like Compounds Contained in E ₁ -Pulp Bleaching Effluent by Fungal Treatment. Applied Biochemistry and Biotechnology, 2001, 95, 135-150.	2.9	13
243	Synthesis, antimycobacterial activities and cytotoxicity on V79 of 3-[4′-Y-(1,1′-biphenyl)-4-yl]-N,N-dimethyl-3-(4-X-phenyl)-2-propen-1-amine derivatives. European Journal of Medicinal Chemistry, 2001, 36, 843-850.	5.5	8
244	Violacein transformation by peroxidases and oxidases: implications on its biological properties. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 463-467.	1.8	23
245	Effect of Na ₂ CO ₃ on the photocatalytic degradation of remazol brilliant blue R. Toxicological and Environmental Chemistry, 2001, 80, 83-93.	1.2	10
246	Novas tendências para o tratamento de resÃduos industriais contendo espécies organocloradas. Quimica Nova, 2000, 23, 504-511.	0.3	64
247	Carbon sources effect on pectinase production from Aspergillus japonicus 586. Brazilian Journal of Microbiology, 2000, 31, 286.	2.0	40
248	Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 2000, 28, 83-99.	20.2	756
249	VIOLACEIN CYTOTOXICITY AND INDUCTION OF APOPTOSIS IN V79 CELLS. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 539.	1.5	73
250	Myelopoietic response in tumour-bearing mice by an aggregated polymer isolated from Aspergillus oryzae. European Journal of Pharmacology, 2000, 388, 219-226.	3.5	27
251	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 37, 93-101.	1.6	40
252	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 37, 67-74.	1.6	25

#	Article	IF	CITATIONS
253	Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 2000, 40, 369-373.	8.2	157
254	Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO. Chemosphere, 2000, 40, 427-432.	8.2	155
255	Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere, 2000, 40, 433-440.	8.2	464
256	Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere, 2000, 41, 1193-1197.	8.2	204
257	Cytotoxicity of prodigiosin and benznidazole on V79 cells. Toxicology Letters, 2000, 116, 237-242.	0.8	33
258	Enzyme applications in the textile industry. Review of Progress in Coloration and Related Topics, 2000, 30, 41-44.	0.2	48
259	Construção e otimização de um sistema para produção e aplicação de ozônio em escala de laboratóı Quimica Nova, 1999, 22, 425.	'io. 0.3	10
260	Toxicity Abatement and Biodegradability Enhancement of Pulp Mill Bleaching Effluent by Advanced Chemical Oxidation. Water Science and Technology, 1999, 40, 337-342.	2.5	22
261	Pulp Mill Effluent Treatment by Fenton-Type Reactions Catalyzed by Iron Complexes. Water Science and Technology, 1999, 40, 351-355.	2.5	35
262	Interferences of dark coloured waters and wastewater on algae toxicity assessment. Toxicological and Environmental Chemistry, 1999, 73, 141-152.	1.2	2
263	Electrochemically assisted photocatalytic degradation of reactive dyes. Applied Catalysis B: Environmental, 1999, 22, 83-90.	20.2	220
264	Degradation of reactive dyes I. A comparative study of ozonation, enzymatic and photochemical processes. Chemosphere, 1999, 38, 835-852.	8.2	131
265	Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere, 1999, 39, 1679-1688.	8.2	157
266	Isolation and Partial Characterization of an Extracellular Low-Molecular Mass Component with High Phenoloxidase Activity fromThermoascus aurantiacus. Biochemical and Biophysical Research Communications, 1999, 256, 20-26.	2.1	14
267	Biomass photochemistry-XXII: Combined photochemical and biological process for treatment of Kraft El effluent. Applied Catalysis B: Environmental, 1998, 15, 211-219.	20.2	16
268	Enzymatic pretreatment of kraft pulps from pinus radiata D don with xylanolytic complex of pénicillium canescens (CP1) fungi. Applied Biochemistry and Biotechnology, 1998, 73, 29-42.	2.9	6
269	Acid-catalysed hydrolysis of rice hull: Evaluation of furfural production. Bioresource Technology, 1998, 66, 189-193.	9.6	117
270	Evaluation of ZnO, TiO2 and supported ZnO on the photoassisted remediation of black liquor, cellulose and textile mill effluents. Chemosphere, 1998, 36, 2119-2133.	8.2	63

#	Article	IF	CITATIONS
271	Hydroxamate Iron Complex with Phenoloxidase Activity Acting on Lignin and Chlorolignins. Biochemical and Biophysical Research Communications, 1998, 249, 719-722.	2.1	17
272	Iron-Binding Catechols Oxidating Lignin and Chlorolignin. Biochemical and Biophysical Research Communications, 1998, 251, 399-402.	2.1	19
273	Activity of N,N-dimethy-1-2-propen-1-amine derivatives in mice experimentally infected with Trypanosoma cruzi. Acta Tropica, 1998, 69, 205-211.	2.0	13
274	Infrared Microspectroscopy in the Pulp and Paper-Making Industry. Applied Spectroscopy Reviews, 1998, 33, 219-236.	6.7	9
275	Lignin biodegradation by the ascomyceteChrysonilia sitophila. Applied Biochemistry and Biotechnology, 1997, 62, 233-242.	2.9	44
276	Lipase from a Brazilian StrainPenicillium citrinum Cultured in a Simple and Inexpensive Medium st]Heat-Denaturation, Kinetics, and pH Stability. Applied Biochemistry and Biotechnology, 1997, 66, 185-195.	2.9	19
277	Stabilityand chemical modification of xylanase fromAspergillussp. (2M1 strain). Biotechnology and Applied Biochemistry, 1997, 25, 19-27.	3.1	17
278	Xylanase Delignification in Traditional and Chlorine-Free Bleaching Sequences in Hardwood Kraft Pulps. ACS Symposium Series, 1996, , 332-338.	0.5	2
279	Variable influence of ferric and cupric ions on Saccharomyces cerevisiae strains used in asymmetric organic synthesis. Biotechnology Letters, 1996, 18, 857-862.	2.2	8
280	Lignin degradation during softwood decaying by the ascomyceteChrysonilia sitophila. Biodegradation, 1995, 6, 265-274.	3.0	20
281	Chemical and photochemical generated carbon-centered radical intermediate and its reaction with desoxyribonucleic acid. Free Radical Biology and Medicine, 1995, 19, 431-440.	2.9	7
282	Silica immobilized enzyme catalyzed removal of chlorolignins from eucalyptus kraft effluent. Journal of Biotechnology, 1995, 43, 161-167.	3.8	40
283	Organosolv pulping-VII: Delignification selectivity of formic acid pulping of Eucalyptus grandis. Bioresource Technology, 1994, 47, 247-256.	9.6	19
284	ZnO-catalysed photodegradation of kraft black liquor. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78, 267-273.	3.9	41
285	Production of extracellular xylanases byPenicillium janthinellum. Applied Biochemistry and Biotechnology, 1994, 48, 107-116.	2.9	15
286	Phenol oxidases production and wood degradation by a thermophilic fungusThermoascus aurantiacus. Applied Biochemistry and Biotechnology, 1993, 43, 37-44.	2.9	13
287	Phenoloxidases and hydrolases from Pycnoporus sanguineus (UEC-2050 strain): applications. Journal of Biotechnology, 1993, 29, 219-228.	3.8	25
288	Lignin peroxidase from Chrysonilia sitophila: Heat-denaturation kinetics and pH stability. Enzyme and Microbial Technology, 1992, 14, 402-406.	3.2	20

NELSON DURÃIN

#	Article	IF	CITATIONS
289	Amazonian lignocellulosic materials-i fungal screening from decayed laurel and cedar trees. Applied Biochemistry and Biotechnology, 1992, 37, 33-41.	2.9	7

Degradation of \hat{A}^2 -O-4 lignin model and related compounds by the ascomyceteChrysonilia sitophila (TFB) Tj ETQq0 0.0 rgBT /8 verlock 10 2.9

291	Organosolv pulping — V: Formic acid delignification of Eucalyptus globulus and Eucalyptus grandis. Bioresource Technology, 1991, 37, 1-6.	9.6	37
292	The effect of carbon sources on the single cell proteins and extracellular enzymes production byChrysonilia sitophila (TFB 27441 strain). Applied Biochemistry and Biotechnology, 1991, 27, 267-276.	2.9	1
293	Lignosulfonate biodegradation by Chrysonilia Sitophila. Applied Biochemistry and Biotechnology, 1991, 30, 185-192.	2.9	8
294	Organosolv-pulping III. Applied Biochemistry and Biotechnology, 1991, 31, 273-282.	2.9	12
295	Biomas photochemistry XV: Photobleaching and biobleaching of Kraft effluent. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 62, 269-279.	3.9	30
296	Biomass photochemistry XIV: Photosensitized pre-treatment of cellulose and its role on cellulase efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 1990, 51, 469-479.	3.9	4
297	Non-polluting wood and pulp delignification: Biomimetic ligninase system. Biotechnology Letters, 1990, 12, 305-308.	2.2	5
298	Different lethal effects by enzyme-generated triplet indole-3-aldehyde in different Escherichia coli strains. Journal of Photochemistry and Photobiology B: Biology, 1990, 4, 371-378.	3.8	1
299	Electron transport in biological processes. Bioelectrochemistry, 1990, 23, 81-91.	1.0	27
300	Electron transport in biological processes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 298, 81-91.	0.1	2
301	Production of microbial protein from forest products. Bioresource Technology, 1990, 23, 155-162.	0.3	6
302	Removal and recovery of uranium by modified <i>Pinus radiata</i> D. Don bark. Journal of Chemical Technology and Biotechnology, 1989, 46, 41-48.	3.2	44
303	Biomass photochemistry: XI. Photochemical pretreatment of cellulose and its fungal degradation. Biotechnology and Bioengineering, 1988, 31, 215-219.	3.3	8
304	Biomass photochemistry: XII. Chemical and photochemical pretreatment of rice hull and its fungal degradation. Biotechnology and Bioengineering, 1988, 32, 564-568.	3.3	7
305	Peroxidase-hydrogen peroxide system acting on lignin(1). Journal of Inorganic Biochemistry, 1988, 34, 105-115.	3.5	10
306	Biomass photochemistry XIII: pre-irradiated lignin from Pinus Radiata D. Don and its degradation by ligninase and horse-radish peroxidase. Journal of Photochemistry and Photobiology A: Chemistry, 1988, 41, 267-273.	3.9	8

#	Article	IF	CITATIONS
307	Chrysonila sitophila (TFB-27441): A hyperlignolytic strain. Biotechnology Letters, 1987, 9, 357-360.	2.2	16
308	Biomass photo-chemistry. A review and prospects. Polymer Degradation and Stability, 1987, 17, 131-149.	5.8	6
309	Electron transport in biological processes. Bioelectrochemistry, 1987, 17, 523-534.	1.0	6
310	The role of singlet oxygen and triplet carbonyls in biological systems. Reviews of Chemical Intermediates, 1987, 8, 147-187.	1.1	12
311	Ligninases fromChrysonilia sitophila (TFB-27441 strain). Applied Biochemistry and Biotechnology, 1987, 16, 157-167.	2.9	29
312	Biomass photochemistry X: Analysis of structural modifications in lignin under UV irradiation. Journal of Photochemistry and Photobiology, 1986, 35, 209-217.	0.6	8
313	Biomass Photochemistry IX:Photochemical Pretreatment of cellulose and its effect on cellulase efficiency. Journal of Photochemistry and Photobiology, 1986, 35, 109-120.	0.6	4
314	Conductimetric method for the determination of phenolic groups in phlobaphene and tannin from Pinus Radiata D. Don: solvent effect. Analyst, The, 1985, 110, 1407-1408.	3.5	4
315	Biomass photochemistry: Vl—Light-induced oxidation of phlobaphene from wood. Polymer Degradation and Stability, 1985, 6, 393-402.	0.5	9
316	Biomass Photochemistry. V. Modifications of Lignin by Photochemical Treatment and Its Chemiluminescence. Journal of Macromolecular Science Part A, Chemistry, 1984, 21, 1467-1485.	0.3	19
317	An experiment in photobiochemistry: α-oxidation of indole-3-acetic acid catalyzed by peroxidase. Biochemical Education, 1984, 12, 173-178.	0.1	5
318	Singlet oxygen generation from the peroxidase-catalysed aerobic oxidation of an activated î—,CH2î—, substrate. Journal of Photochemistry and Photobiology, 1984, 25, 285-294.	0.6	15
319	Catalysis of the peroxidase-mediated oxidation of aldehydes by enolphosphates. BBA - Proteins and Proteomics, 1984, 789, 57-62.	2.1	10
320	BINDING OF RIBOFLAVIN TO LYSOZYME PROMOTED BY PEROXIDASEâ€GENERATED TRIPLET ACETONE. Photochemistry and Photobiology, 1983, 37, 247-250.	2.5	19
321	Enzymatically generated electronically excited molecules induce transformation of 4-thiouridine to uridine. Biochemical and Biophysical Research Communications, 1983, 117, 923-929.	2.1	4
322	DNA strand scission in E.coli by electronically excited state molecules generated by enzymatic systems. Biochemical and Biophysical Research Communications, 1982, 104, 990-995.	2.1	8
323	PEROXIDASE-GENERATED TRIPLET INDOLE-3-ALDEHYDE ADDS TO URIDINE BASES AND EXCITES THE 4-THIOURIDINE GROUP IN t-RNAPhe. Photochemistry and Photobiology, 1982, 36, 21-24.	2.5	28
324	Singlet Oxygen in Biological Processes. , 1982, , 345-369.		15

Singlet Oxygen in Biological Processes. , 1982, , 345-369. 324

#	Article	IF	CITATIONS
325	Metabolites of carbofuran: Effect on indole-3-acetic acid degradation. Pesticide Biochemistry and Physiology, 1981, 16, 136-140.	3.6	4
326	Dimethyl sulfoxide as chemical and biological probe: Conformational effect on peroxidase systems. Biochemical and Biophysical Research Communications, 1981, 103, 131-138.	2.1	12
327	Peroxidase and hydrogen peroxide detection by a bioenergized method. Analytical Biochemistry, 1980, 105, 36-38.	2.4	26
328	LONGâ€RANGE TRIPLETâ€SINGLET ENERGY TRANSFER FROM ENZYME GENERATED TRIPLET ACETONE TO XANTHE DYES. Photochemistry and Photobiology, 1980, 32, 113-116.	ENE 2.5	30
329	Model studies of the α-peroxidase system: Formation of an electronically excited product. Archives of Biochemistry and Biophysics, 1980, 200, 245-252.	3.0	33
330	Excited indole-3-aldehyde from the peroxidase-catalyzed aerobic oxidation of indole-3-acetic acid. Reaction with and energy transfer to transfer ribonucleic acid. Biochemistry, 1980, 19, 5270-5275.	2.5	55
331	PEROXIDASE CATALYZED GENERATION OF TRIPLET ACETONE. Photochemistry and Photobiology, 1979, 30, 101-110.	2.5	86
332	ENERGY TRANSFER FROM ENZYME-GENERATED TRIPLET ACETONE TO RIBOFLAVIN PERTURBED BY MOLECULES RELATED TO THYROXINE. Photochemistry and Photobiology, 1979, 30, 111-115.	2.5	11
333	ELECTRONICALLY EXCITED SPECIES IN THE PEROXIDASE CATALYZED OXIDATION OF INDOLEACETIC ACID. EFFECT UPON DNA AND RNA. Photochemistry and Photobiology, 1979, 30, 195-198.	2.5	36
334	Photobiochemistry in the dark: Photohemolysis of red cells sensitized by chlorpromazine-bioenergized triplet acetone system. Biochemical and Biophysical Research Communications, 1979, 91, 427-433.	2.1	8
335	Peroxidase activity in human red cell: A biological model for excited state molecules generation. Biochemical and Biophysical Research Communications, 1979, 88, 642-648.	2.1	12
336	CHEMIENERGIZED SPECIES IN PEROXIDASE SYSTEMS. Photochemistry and Photobiology, 1978, 28, 445-450.	2.5	44
337	Singlet oxygen formation during peroxidase catalyzed degradation of carcinogenic N-nitrosamine. Biochemical and Biophysical Research Communications, 1978, 83, 287-294.	2.1	9
338	Energy transfer from enzymically generated triplet carbonyl compounds to the fluorescent state of flavins. Biochemical and Biophysical Research Communications, 1978, 81, 779-784.	2.1	33
339	Photochemical oxidation of chlorpromazine in the dark induced by enzymically generated triplet carbonyl compounds. Biochemical and Biophysical Research Communications, 1978, 81, 785-790.	2.1	26
340	Photochemical-like effects in DNA caused by enzynically energized triplet carbonyl cmpounds. Biochemical and Biophysical Research Communications, 1978, 80, 490-495.	2.1	33
341	Generation of bio-electronic energy by electron transfer: Reduction of peroxidase compound I and compound II by eosine. Biochemical and Biophysical Research Communications, 1978, 81, 75-81.	2.1	17
342	DNA damage during the peroxidase-catalyzed aerobic oxidation of isobutanal. Nucleic Acids and Protein Synthesis, 1978, 518, 177-180.	1.7	31

#	Article	IF	CITATIONS
343	Generation of electronically excited aromatic aldehydes in the peroxidase catalyzed aerobic oxidation of aromatic acetaldehydes. Biochemical and Biophysical Research Communications, 1977, 74, 1146-1153.	2.1	26
344	Enzymically generated triplet acetone. Journal of the Chemical Society Chemical Communications, 1977, , 442-443.	2.0	36
345	Cyclic peroxides. 50. Prostanoid endoperoxide model compounds: 1-oxatrimethylene diradicals in the thermolysis and photolysis of 1,2-dioxolanes. Journal of the American Chemical Society, 1977, 99, 2729-2734.	13.7	14
346	Oxidation of isonicotinic acid hydrazide by the peroxidase system. Archives of Biochemistry and Biophysics, 1977, 180, 452-458.	3.0	24
347	Generation of electronic energy in the myoglobin-catalyzed oxidation of acetoacetate to methylglyoxal. Archives of Biochemistry and Biophysics, 1976, 176, 663-670.	3.0	27
348	Chemienergized aromatic aldehydes from the peroxidase catalyzed oxidation of pyruvates: Excited vanillin from vanylpyruvate. Archives of Biochemistry and Biophysics, 1976, 173, 58-65.	3.0	20
349	CHEMILUMINESCENCE FROM THE OXIDATION OF AUXIN DERIVATIVES. Photochemistry and Photobiology, 1976, 24, 383-388.	2.5	31
350	Generation of electronic energy in the peroxidase catalyzed oxidation of indole-3-acetic acid. Biochemical and Biophysical Research Communications, 1975, 65, 138-145.	2.1	45
351	Singlet acetone efficiency and importance of triplet acetone induced decomposition of tetramethyl-1,2-dioxetane from direct chemiluminescence. Journal of the American Chemical Society, 1975, 97, 5464-5467.	13.7	29
352	Mass spectra of benzenesulfonylhydrazides. Organic Mass Spectrometry, 1974, 8, 413-414.	1.3	2
353	Synthesis and characterization of N-nitroso-4-aza-1,2-dioxolanes, their thermolysis and photolysis. Journal of Organic Chemistry, 1974, 39, 1791-1792.	3.2	7
354	Cyclic peroxides. XXVII. 1,3 Diradicals via thermolysis of 1,2-dioxolanes. Journal of Organic Chemistry, 1973, 38, 1434-1436.	3.2	9
355	Thermolysis of 1,2-dioxolanes. Journal of the Chemical Society Chemical Communications, 1972, , 279-280.	2.0	2
356	1,2,4-Trioxepans: synthesis and mass spectral behaviour. Journal of the Chemical Society Chemical Communications, 1972, , 798.	2.0	7
357	Photolysis of 1,2-dioxolanes. Tetrahedron Letters, 1972, 13, 1357-1358.	1.4	4
358	Electrochemical Sensors Based on Unidimensional Nanostructures. , 0, , 243-265.		1
359	Biogenic Silver Nanoparticles: Antibacterial and Cytotoxicity Applied to Textile Fabrics. Journal of Nano Research, 0, 20, 69-76.	0.8	19
360	Therapeutic Potential of Biogenic Silver Nanoparticles in Murine Cutaneous Leishmaniasis. Journal of Nano Research, 0, 20, 89-97.	0.8	33

#	Article	IF	CITATIONS
361	New Strategy for Controlled Release of Nitric Oxide. Journal of Nano Research, 0, 20, 61-67.	0.8	15
362	Biogenic Silver Nanoparticles and its Antifungal Activity as a New Topical Transungual Drug. Journal of Nano Research, 0, 20, 99-107.	0.8	16
363	BIOGENIC SYNTHESIS OF IMPORTANT ENVIRONMENTAL MINERALS: MAGNESIUM PHOSPHATE COMPOUNDS AND PERSPECTIVES. Quimica Nova, 0, , .	0.3	3
364	Caracterização dos efeitos da imunoterapia com OncoTherad no câncer de bexiga não-músculo invasivo: análise da regressão tumoral e sobrevida pós-tratamento. , 0, , .		0
365	Imunomodulador P-MAPA: Nova perspectiva terapêutica frente à modulação do sistema imune no câncer pancreático quimicamente induzido em ratos. , 0, , .		0
366	New therapeutic approaches for non-muscle invasive bladder cancer (NMIBC): intravesical use of oncotherad biological response modifier and its association with platelet-rich plasma (PRP). , 0, , .		0
367	Thiamethoxam used as nanopesticide for the effective management of <i>Diaphorina citri</i> psyllid: an environmental-friendly formulation. International Journal of Pest Management, 0, , 1-9.	1.8	3
368	Full Diabetic Foot Ulcer Healing and Pain Relief Based on Platelet-Rich-Plasma gel Formulation Treatment and the Involved Pathways. International Journal of Lower Extremity Wounds, 0, , 153473462211097.	1.1	1
369	Enzymatic Active Release of Violacein Present in Nanostructured Lipid Carrier by Lipase Encapsulated in 3D-Bioprinted Chitosan-Hydroxypropyl Methylcellulose Matrix With Anticancer Activity. Frontiers in Chemistry, 0, 10, .	3.6	2