
Claudia Fuoco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1615588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcription Factor Activation Profiles (TFAP) identify compounds promoting differentiation of Acute Myeloid Leukemia cell lines. Cell Death Discovery, 2022, 8, 16.	4.7	0
2	Graphene oxide activates B cells with upregulation of granzyme B expression: evidence at the single-cell level for its immune-modulatory properties and anticancer activity. Nanoscale, 2022, 14, 333-349.	5.6	9
3	Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metabolism, 2022, 34, 533-548.e12.	16.2	91
4	SCA-1 micro-heterogeneity in the fate decision of dystrophic fibro/adipogenic progenitors. Cell Death and Disease, 2021, 12, 122.	6.3	21
5	Skeletal Muscle Subpopulation Rearrangements upon Rhabdomyosarcoma Development through Single-Cell Mass Cytometry. Journal of Clinical Medicine, 2021, 10, 823.	2.4	4
6	Biofabricating murine and human myoâ€substitutes for rapid volumetric muscle loss restoration. EMBO Molecular Medicine, 2021, 13, e12778.	6.9	29
7	A Resource for the Network Representation of Cell Perturbations Caused by SARS-CoV-2 Infection. Genes, 2021, 12, 450.	2.4	7
8	The War after War: Volumetric Muscle Loss Incidence, Implication, Current Therapies and Emerging Reconstructive Strategies, a Comprehensive Review. Biomedicines, 2021, 9, 564.	3.2	13
9	Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NanoImpact, 2021, 23, 100330.	4.5	8
10	Characterization of the Skeletal Muscle Secretome Reveals a Role for Extracellular Vesicles and IL1α/IL1β in Restricting Fibro/Adipogenic Progenitor Adipogenesis. Biomolecules, 2021, 11, 1171.	4.0	10
11	Skeletal Muscle-Derived Human Mesenchymal Stem Cells: Influence of Different Culture Conditions on Proliferative and Myogenic Capabilities. Frontiers in Physiology, 2020, 11, 553198.	2.8	16
12	High-Dimensional Single-Cell Quantitative Profiling of Skeletal Muscle Cell Population Dynamics during Regeneration. Cells, 2020, 9, 1723.	4.1	18
13	mTOR Inhibition Leads to Src-Mediated EGFR Internalisation and Degradation in Glioma Cells. Cancers, 2020, 12, 2266.	3.7	7
14	Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death and Differentiation, 2020, 27, 2921-2941.	11.2	69
15	Singleâ€Cell Analysis: Toward Highâ€Dimensional Singleâ€Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Singleâ€Cell Mass Cytometry (Small 21/2020). Small, 2020, 16, 2070117.	10.0	3
16	Toward Highâ€Dimensional Singleâ€Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Singleâ€Cell Mass Cytometry. Small, 2020, 16, 2000123.	10.0	10
17	Metabolic reprogramming of fibro/adipogenic progenitors facilitates muscle regeneration. Life Science Alliance, 2020, 3, e202000646.	2.8	36
18	Myo-REC: A Portal for Signaling Interactions in Muscle Regeneration. Frontiers in Physiology, 2019, 10, 1216.	2.8	8

CLAUDIA FUOCO

#	Article	IF	CITATIONS
19	Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells International, 2019, 2019, 1-19.	2.5	32
20	The immunosuppressant drug azathioprine restrains adipogenesis of muscle Fibro/Adipogenic Progenitors from dystrophic mice by affecting AKT signaling. Scientific Reports, 2019, 9, 4360.	3.3	20
21	Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Science Alliance, 2019, 2, e201900437.	2.8	41
22	Designing a 3D printed human derived artificial myo-structure for anal sphincter defects in anorectal malformations and adult secondary damage. Materials Today Communications, 2018, 15, 120-123.	1.9	7
23	High-Density ZnO Nanowires as a Reversible Myogenic–Differentiation Switch. ACS Applied Materials & Interfaces, 2018, 10, 14097-14107.	8.0	23
24	Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo. Cell Death and Disease, 2018, 9, 1.	6.3	600
25	Group I Paks support muscle regeneration and counteract cancerâ€associated muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 727-746.	7.3	20
26	Myoblast Myogenic Differentiation but Not Fusion Process Is Inhibited via MyoD Tetraplex Interaction. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-8.	4.0	7
27	Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers inÂvitro and inÂvivo. Biomaterials, 2017, 131, 98-110.	11.4	252
28	Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nature Communications, 2017, 8, 1109.	12.8	111
29	Regulation of myoblast differentiation by metabolic perturbations induced by metformin. PLoS ONE, 2017, 12, e0182475.	2.5	28
30	Activation of the Pro-Oxidant PKCβII-p66Shc Signaling Pathway Contributes to Pericyte Dysfunction in Skeletal Muscles of Patients With Diabetes With Critical Limb Ischemia. Diabetes, 2016, 65, 3691-3704.	0.6	48
31	Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering. Journal of Orthopaedic Surgery and Research, 2016, 11, 86.	2.3	59
32	Could a functional artificial skeletal muscle be useful in muscle wasting?. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 1.	2.5	13
33	Characterization by mass cytometry of different methods for the preparation of muscle mononuclear cells. New Biotechnology, 2016, 33, 514-523.	4.4	9
34	PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells. Oncotarget, 2016, 7, 23837-23849.	1.8	16
35	<i>In vivo</i> generation of a mature and functional artificial skeletal muscle. EMBO Molecular Medicine, 2015, 7, 411-422.	6.9	79
36	AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nature Cell Biology, 2015, 17, 20-30.	10.3	200

Claudia Fuoco

#	Article	IF	CITATIONS
37	Metformin Protects Skeletal Muscle from Cardiotoxin Induced Degeneration. PLoS ONE, 2014, 9, e114018.	2.5	45
38	3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Frontiers in Physiology, 2014, 5, 203.	2.8	90
39	Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skeletal Muscle, 2012, 2, 24.	4.2	78
40	The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. Journal of Cell Biology, 2010, 191, 155-168.	5.2	432
41	Analysis of apoptosome dysregulation in pancreatic cancer and of its role in chemoresistance. Cancer Biology and Therapy, 2007, 6, 209-217.	3.4	9
42	A Novel Role for Autophagy in Neurodevelopment. Autophagy, 2007, 3, 505-507.	9.1	54
43	Ambra1 regulates autophagy and development of the nervous system. Nature, 2007, 447, 1121-1125.	27.8	889
44	Adipogenesis of Skeletal Muscle Fibro/Adipogenic Progenitors is Controlled by the WNT5a/GSK3/ \hat{l}^2 -Catenin Axis. SSRN Electronic Journal, 0, , .	0.4	7