
Manuel A Sanchez-Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1614596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors. Cell Reports, 2022, 38, 110522.	6.4	7
2	A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death and Differentiation, 2022, 29, 2347-2361.	11.2	2
3	CRISPR/Cas9-Directed Gene Trap Constitutes a Selection System for Corrected BCR/ABL Leukemic Cells in CML. International Journal of Molecular Sciences, 2022, 23, 6386.	4.1	3
4	Characterization of the Platelet Phenotype Caused by a Germline RUNX1 Variant in a CRISPR/Cas9-Generated Murine Model. Thrombosis and Haemostasis, 2021, 121, 1193-1205.	3.4	5
5	Future Approaches for Treating Chronic Myeloid Leukemia: CRISPR Therapy. Biology, 2021, 10, 118.	2.8	9
6	Granuloma Formation in a Cyba-Deficient Model of Chronic Granulomatous Disease Is Associated with Myeloid Hyperplasia and the Exhaustion of B-Cell Lineage. International Journal of Molecular Sciences, 2021, 22, 8701.	4.1	3
7	CRISPR-Cas9 Technology as a Tool to Target Gene Drivers in Cancer: Proof of Concept and New Opportunities to Treat Chronic Myeloid Leukemia. CRISPR Journal, 2021, 4, 519-535.	2.9	3
8	Establishment of a conditional Nomo1 mouse model by CRISPR/Cas9 technology. Molecular Biology Reports, 2020, 47, 1381-1391.	2.3	6
9	Mammalian-specific ectodermal enhancers control the expression of <i>Hoxc</i> genes in developing nails and hair follicles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30509-30519.	7.1	20
10	Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. Science Advances, 2020, 6, .	10.3	31
11	Pathogenic SREK1 decrease in Huntington's disease lowers TAF1 mimicking X-linked dystonia parkinsonism. Brain, 2020, 143, 2207-2219.	7.6	17
12	Expression and functional analysis of the hydrogen peroxide biosensors HyPer and HyPer2 in C2C12 myoblasts/myotubes and single skeletal muscle fibres. Scientific Reports, 2020, 10, 871.	3.3	13
13	Dogs are resistant to prion infection, due to the presence of aspartic or glutamic acid at position 163 of their prion protein. FASEB Journal, 2020, 34, 3969-3982.	0.5	27
14	<i>Cyba</i> -deficient mice display an increase in hematopoietic stem cells and an overproduction of immunoglobulins. Haematologica, 2020, 106, 142-153.	3.5	7
15	The PSMA8 subunit of the spermatoproteasome is essential for proper meiotic exit and mouse fertility. PLoS Genetics, 2019, 15, e1008316.	3.5	37
16	FRI-422-Genetic and pathophysiological factors leading to deficient acyl-CoA oxidase 2 (ACOX2) activity in hepatocytes, an alteration which causes oxidative and endoplasmic reticulum stress in liver cells. Journal of Hepatology, 2019, 70, e579.	3.7	0
17	Splice donor site sgRNAs enhance CRISPR/Cas9-mediated knockout efficiency. PLoS ONE, 2019, 14, e0216674.	2.5	19
18	Ubiquitin-specific protease 26 (USP26) is not essential for mouse gametogenesis and fertility. Chromosoma, 2019, 128, 237-247.	2.2	18

#	Article	IF	CITATIONS
19	A Single Amino Acid Substitution, Found in Mammals with Low Susceptibility to Prion Diseases, Delays Propagation of Two Prion Strains in Highly Susceptible Transgenic Mouse Models. Molecular Neurobiology, 2019, 56, 6501-6511.	4.0	13
20	MEK5 promotes lung adenocarcinoma. European Respiratory Journal, 2019, 53, 1801327.	6.7	10
21	An Amino Acid Substitution Found in Animals with Low Susceptibility to Prion Diseases Confers a Protective Dominant-Negative Effect in Prion-Infected Transgenic Mice. Molecular Neurobiology, 2018, 55, 6182-6192.	4.0	15
22	Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathologica, 2018, 135, 179-199.	7.7	56
23	Unraveling the key to the resistance of canids to prion diseases. PLoS Pathogens, 2017, 13, e1006716.	4.7	30
24	The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of <i>BCR/ABL in vitro</i> and in a xenograft model of chronic myeloid leukemia. Oncotarget, 2017, 8, 26027-26040.	1.8	30
25	C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nature Communications, 2016, 7, 13298.	12.8	80
26	Transgenic Mouse Bioassay: Evidence That Rabbits Are Susceptible to a Variety of Prion Isolates. PLoS Pathogens, 2015, 11, e1004977.	4.7	24
27	STAG3 is a strong candidate gene for male infertility. Human Molecular Genetics, 2014, 23, 3421-3431.	2.9	69
28	Meiotic cohesin complexes are essential for the formation of the axial element in mice. Journal of Cell Biology, 2012, 197, 877-885.	5.2	100
29	Identification and molecular characterization of the mammalian α-kleisin RAD21L. Cell Cycle, 2011, 10, 1477-1487.	2.6	69
30	The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO Journal, 2011, 30, 3091-3105.	7.8	138
31	Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas. BMC Cancer, 2010, 10, 454.	2.6	26
32	Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO Journal, 2009, 28, 8-20.	7.8	125
33	Long-Term Effects of Mouse Intracytoplasmic Sperm Injection with DNA-Fragmented Sperm on Health and Behavior of Adult Offspring1. Biology of Reproduction, 2008, 78, 761-772.	2.7	311
34	Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes and Development, 2008, 22, 2400-2413.	5.9	147
35	FUS-DDIT3 Prevents the Development of Adipocytic Precursors in Liposarcoma by Repressing PPAR 3 and C/EBP 1 ± and Activating eIF4E. PLoS ONE, 2008, 3, e2569.	2.5	44
36	Brain Tumour Stem Cells: Implications for Cancer Therapy and Regenerative Medicine. Current Stem Cell Research and Therapy, 2008, 3, 197-207.	1.3	20

Manuel A Sanchez-Martin

#	Article	IF	CITATIONS
37	Fat-specific FUS-DDIT3-transgenic mice establish PPARÂ inactivation is required to liposarcoma development. Carcinogenesis, 2007, 28, 2069-2073.	2.8	15
38	Sustained leukaemic phenotype after inactivation of BCR-ABLp190 in mice. Oncogene, 2007, 26, 1702-1713.	5.9	20
39	<i>SLUG (SNAI2)</i> overexpression in embryonic development. Cytogenetic and Genome Research, 2006, 114, 24-29.	1.1	27
40	SLUG in cancer development. Oncogene, 2005, 24, 3073-3082.	5.9	100
41	Cancer development induced by graded expression of Snail in mice. Human Molecular Genetics, 2005, 14, 3449-3461.	2.9	67
42	Deletion of the SLUG (<i>SNAI2</i>) gene results in human piebaldism. American Journal of Medical Genetics, Part A, 2003, 122A, 125-132.	1.2	109
43	The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene, 2003, 22, 4205-4211.	5.9	83
44	SLUG (SNAI2) deletions in patients with Waardenburg disease. Human Molecular Genetics, 2002, 11, 3231-3236.	2.9	211
45	Expression of the FUS domain restores liposarcoma development in CHOP transgenic mice. Oncogene, 2002, 21, 1679-1684.	5.9	27
46	Understanding Mesenchymal Cancer: The Liposarcoma-Associated t(12;16) (q13;;p11) Chromosomal Translocation as a Model. Current Genomics, 2002, 3, 237-244.	1.6	0
47	Selective Destruction of Tumor Cells through Specific Inhibition of Products Resulting from Chromosomal Translocations. Current Cancer Drug Targets, 2001, 1, 109-119.	1.6	5
48	Liposarcoma initiated by FUS/TLS-CHOP: the FUS/TLS domain plays a critical role in the pathogenesis of liposarcoma. Oncogene, 2000, 19, 6015-6022.	5.9	76
49	IL-4 improves the detection of cytogenetic abnormalities in multiple myeloma and increases the proportion of clonally abnormal metaphases. British Journal of Haematology, 1998, 103, 163-167.	2.5	34
50	CRISPR-ERA for Switching Off (Onco) Genes. , 0, , .		3
51	Expression of the FUS domain restores liposarcoma development in CHOP transgenic mice. , 0, .		1