Adrian W R Serohijos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1614525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mobile Gene Sequence Evolution within Individual Human Gut Microbiomes Is Better Explained by Gene-Specific Than Host-Specific Selective Pressures. Genome Biology and Evolution, 2021, 13, .	2.5	8
2	Avoidance of protein unfolding constrains protein stability in long-term evolution. Biophysical Journal, 2021, 120, 2413-2424.	0.5	7
3	Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution. Nature Ecology and Evolution, 2020, 4, 437-452.	7.8	44
4	The Combination of IFN \hat{I}^2 and TNF Induces an Antiviral and Immunoregulatory Program via Non-Canonical Pathways Involving STAT2 and IRF9. Cells, 2019, 8, 919.	4.1	11
5	A functional substitution in the Lâ€aromatic amino acid decarboxylase enzyme worsens somatic symptoms via a serotonergic pathway. Annals of Neurology, 2019, 86, 168-180.	5.3	9
6	SodaPop: a forward simulation suite for the evolutionary dynamics of asexual populations on protein fitness landscapes. Bioinformatics, 2019, 35, 4053-4062.	4.1	6
7	Stability of the Influenza Virus Hemagglutinin Protein Correlates with Evolutionary Dynamics. MSphere, 2018, 3, .	2.9	31
8	Evolution on the Biophysical Fitness Landscape of an RNA Virus. Molecular Biology and Evolution, 2018, 35, 2390-2400.	8.9	45
9	Estimating the contribution of folding stability to nonspecific epistasis in protein evolution. Proteins: Structure, Function and Bioinformatics, 2018, 86, 1242-1250.	2.6	17
10	Molecular basis of interactions between SH3 domain-containing proteins and the proline-rich region of the ubiquitin ligase Itch. Journal of Biological Chemistry, 2017, 292, 6325-6338.	3.4	13
11	Highly expressed genes evolve under strong epistasis from a proteome-wide scan in E. coli. Scientific Reports, 2017, 7, 15844.	3.3	4
12	Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations. Current Opinion in Structural Biology, 2017, 42, 31-40.	5.7	63
13	Evolutionary dynamics of viral escape under antibodies stress: A biophysical model. Protein Science, 2016, 25, 1332-1340.	7.6	12
14	Isolation and Analysis of Rare Norovirus Recombinants from Coinfected Mice Using Drop-Based Microfluidics. Journal of Virology, 2015, 89, 7722-7734.	3.4	32
15	Minimalistic Predictor of Protein Binding Energy: Contribution of Solvation Factor to Protein Binding. Biophysical Journal, 2015, 108, 795-798.	0.5	17
16	Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria. PLoS Genetics, 2015, 11, e1005612.	3.5	79
17	Influenza A H1N1 Pandemic Strain Evolution – Divergence and the Potential for Antigenic Drift Variants. PLoS ONE, 2014, 9, e93632	2.5	45
18	Contribution of Selection for Protein Folding Stability in Shaping the Patterns of Polymorphisms in Coding Regions. Molecular Biology and Evolution, 2014, 31, 165-176.	8.9	51

#	Article	IF	CITATIONS
19	The Influence of Selection for Protein Stability on dN/dS Estimations. Genome Biology and Evolution, 2014, 6, 2956-2967.	2.5	49
20	Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary population genetics. Current Opinion in Structural Biology, 2014, 26, 84-91.	5.7	88
21	Protein Quality Control Acts on Folding Intermediates to Shape the Effects of Mutations on Organismal Fitness. Molecular Cell, 2013, 49, 133-144.	9.7	145
22	Highly Abundant Proteins Favor More Stable 3D Structures in Yeast. Biophysical Journal, 2013, 104, L1-L3.	0.5	33
23	Positively Selected Sites in Cetacean Myoglobins Contribute to Protein Stability. PLoS Computational Biology, 2013, 9, e1002929.	3.2	52
24	Protein Biophysics Explains Why Highly Abundant Proteins Evolve Slowly. Cell Reports, 2012, 2, 249-256.	6.4	108
25	The <i>Streptomyces</i> -Produced Antibiotic Fosfomycin Is a Promiscuous Substrate for Archaeal Isopentenyl Phosphate Kinase. Biochemistry, 2012, 51, 917-925.	2.5	8
26	A Physical Model Reveals the Mechanochemistry Responsible for Dynein's Processive Motion. Biophysical Journal, 2011, 101, 144-150.	0.5	11
27	Structural Basis for μ-Opioid Receptor Binding and Activation. Structure, 2011, 19, 1683-1690.	3.3	30
28	Molecular Modeling Tools and Approaches for CFTR and Cystic Fibrosis. Methods in Molecular Biology, 2011, 741, 347-363.	0.9	2
29	Kinetic models for the coordinated stepping of cytoplasmic dynein. Journal of Chemical Physics, 2009, 130, 025101.	3.0	19
30	A Structural Model of the Pore-Forming Region of the Skeletal Muscle Ryanodine Receptor (RyR1). PLoS Computational Biology, 2009, 5, e1000367.	3.2	25
31	Multiscale approaches for studying energy transduction in dynein. Physical Chemistry Chemical Physics, 2009, 11, 4840.	2.8	14
32	Computational Studies Reveal Phosphorylation-dependent Changes in the Unstructured R Domain of CFTR. Journal of Molecular Biology, 2008, 378, 1052-1063.	4.2	54
33	Protein folding: Then and now. Archives of Biochemistry and Biophysics, 2008, 469, 4-19.	3.0	88
34	Multiple Membrane-Cytoplasmic Domain Contacts in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mediate Regulation of Channel Gating. Journal of Biological Chemistry, 2008, 283, 26383-26390.	3.4	109
35	Identification and Rational Redesign of Peptide Ligands to CRIP1, A Novel Biomarker for Cancers. PLoS Computational Biology, 2008, 4, e1000138.	3.2	53
36	Phenylalanine-508 mediates a cytoplasmic–membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3256-3261.	7.1	354

#	Article	IF	CITATIONS
37	Diminished Self-Chaperoning Activity of the ΔF508 Mutant of CFTR Results in Protein Misfolding. PLoS Computational Biology, 2008, 4, e1000008.	3.2	46
38	A structural model reveals energy transduction in dynein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18540-18545.	7.1	34